2018 Articles

Meer MV, Podolskiy DI, Tyshkovskiy A, Gladyshev VN. (2018) A whole lifespan mouse multi-tissue DNA methylation clock. eLife.7, e40675.

AbstractAge predictors based on DNA methylation levels at a small set of CpG sites, DNAm clocks, have been developed for humans and extended to several other species. Three currently available versions of mouse DNAm clocks were either created for individual tissues or tuned towards young ages. Here, we constructed a robust multi-tissue age predictor based on 435 CpG sites, which covers the entire mouse lifespan and remains unbiased with respect to any particular age group. It can successfully detect the effects of certain lifespan-modulating interventions on DNAm age as well as the rejuvenation effect related to the transition from fibroblasts to iPSCs. We have carried out comparative analyses of available mouse DNAm clocks, which revealed their broad applicability, but also certain limitations to the use of tissue-specific and multi-tissue age predictors. Together, these tools should help address diverse questions in aging research. More Information

Bakula D, Aliper AM, Mamoshina P, Petr MA, Teklu A, Baur JA, Campisi J, Ewald CY, Georgievskaya A, Gladyshev VN, Kovalchuk O, Lamming DW, Luijsterburg MS, Martín-Montalvo A, Maudsley S, Mkrtchyan GV, Moskalev A, Olshansky SJ, Ozerov IV, Pickett A, Ristow M, Zhavoronkov A, Scheibye-Knudsen M. (2018) Aging and drug discovery. Aging (Albany NY). 11, 3079-3088.

AbstractMultiple interventions in the aging process have been discovered to extend the healthspan of model organisms. Both industry and academia are therefore exploring possible transformative molecules that target aging and age-associated diseases. In this overview, we summarize the presented talks and discussion points of the 5th Annual Aging and Drug Discovery Forum 2018 in Basel, Switzerland. Here academia and industry came together, to discuss the latest progress and issues in aging research. The meeting covered talks about the mechanistic cause of aging, how longevity signatures may be highly conserved, emerging biomarkers of aging, possible interventions in the aging process and the use of artificial intelligence for aging research and drug discovery. Importantly, a consensus is emerging both in industry and academia, that molecules able to intervene in the aging process may contain the potential to transform both societies and healthcare. More Information

Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. (2018) Selenoproteins in colon cancer. Free Radic Biol Med.127, 14-25.

AbstractSelenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions. More Information

Lee SG, Mikhalchenko AE, Yim SH, Gladyshev VN. (2018) A naked mole rat iPSC line expressing drug-inducible mouse pluripotency factors developed from embryonic fibroblasts. Stem Cell Res. 10, 197-200.

AbstractNaked mole rats (NMRs, Heterocephalus glaber) are long-lived, cancer-resistant rodents. Here, we report the development of an induced pluripotent stem cell (iPSC) line generated from immortalized NMR embryonic fibroblasts transduced with a doxycycline-inducible mouse OSKM polycistronic vector. This iPSC line was shown to express pluripotency-associated markers, form embryoid bodies, differentiate in vitro to the derivatives of three germ layers, and exhibit normal karyotype. The ability of iPSCs to differentiate in vivo was supported by the contribution to interspecific chimera upon injection into mouse blastocysts. This NMR iPSC line may be a useful tool in cancer and aging research. More Information

Zhang Y, Lee JH, Paull TT, Gehrke S, D’Alessandro A, Dou Q, Gladyshev VN, Schroeder EA, Steyl SK, Christian BE, Shadel GS. (2018) Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci Signal. 11, 538.

AbstractMitochondria are integral to cellular energy metabolism and ATP production and are involved in regulating many cellular processes. Mitochondria produce reactive oxygen species (ROS), which not only can damage cellular components but also participate in signal transduction. The kinase ATM, which is mutated in the neurodegenerative, autosomal recessive disease ataxia-telangiectasia (A-T), is a key player in the nuclear DNA damage response. However, ATM also performs a redox-sensing function mediated through formation of ROS-dependent disulfide-linked dimers. We found that mitochondria-derived hydrogen peroxide promoted ATM dimerization. In HeLa cells, ATM dimers were localized to the nucleus and inhibited by the redox regulatory protein thioredoxin 1 (TRX1), suggesting the existence of a ROS-mediated, stress-signaling relay from mitochondria to the nucleus. ATM dimer formation did not affect its association with chromatin in the absence or presence of nuclear DNA damage, consistent with the separation of its redox and DNA damage signaling functions. Comparative analysis of U2OS cells expressing either wild-type ATM or the redox sensing-deficient C2991L mutant revealed that one function of ATM redox sensing is to promote glucose flux through the pentose phosphate pathway (PPP) by increasing the abundance and activity of glucose-6-phosphate dehydrogenase (G6PD), thereby increasing cellular antioxidant capacity. The PPP produces the coenzyme NADPH needed for a robust antioxidant response, including the regeneration of TRX1, indicating the existence of a regulatory feedback loop involving ATM and TRX1. We propose that loss of the mitochondrial ROS-sensing function of ATM may cause cellular ROS accumulation and oxidative stress in A-T. More Information

Yim SH, Everley RA, Schildberg FA, Lee SG, Orsi A, Barbati ZR, Karatepe K, Fomenko DE, Tsuji PA, Luo HR, Gygi SP, Sitia R, Sharpe AH, Hatfield DL, Gladyshev VN. (2018) Role of Selenof as a Gatekeeper of Secreted Disulfide-Rich Glycoproteins. Cell Rep. 23, 1387-1398.

AbstractSelenof (15-kDa selenoprotein; Sep15) is an endoplasmic reticulum (ER)-resident thioredoxin-like oxidoreductase that occurs in a complex with UDP-glucose:glycoprotein glucosyltransferase. We found that Selenof deficiency in mice leads to elevated levels of non-functional circulating plasma immunoglobulins and increased secretion of IgM during in vitro splenic B cell differentiation. However, Selenof knockout animals show neither enhanced bacterial killing capacity nor antigen-induced systemic IgM activity, suggesting that excess immunoglobulins are not functional. In addition, ER-to-Golgi transport of a target glycoprotein was delayed in Selenof knockout embryonic fibroblasts, and proteomic analyses revealed that Selenof deficiency is primarily associated with antigen presentation and ER-to-Golgi transport. Together, the data suggest that Selenof functions as a gatekeeper of immunoglobulins and, likely, other client proteins that exit the ER, thereby supporting redox quality control of these proteins. More Information

Samokhin AO, Stephens T, Wertheim BM, Wang RS, Vargas SO, Yung LM, Cao M, Brown M, Arons E, Dieffenbach PB, Fewell JG, Matar M, Bowman FP, Haley KJ, Alba GA, Marino SM, Kumar R, Rosas IO, Waxman AB, Oldham WM, Khanna D, Graham BB, Seo S, Gladyshev VN, Yu PB, Fredenburgh LE, Loscalzo J, Leopold JA, Maron BA. (2018) NEDD9 targets COL3A1 to promote endothelial fibrosis and pulmonary arterial hypertension. Sci Transl Med. 10, 445.

AbstractGermline mutations involving small mothers against decapentaplegic-transforming growth factor-β (SMAD-TGF-β) signaling are an important but rare cause of pulmonary arterial hypertension (PAH), which is a disease characterized, in part, by vascular fibrosis and hyperaldosteronism (ALDO). We developed and analyzed a fibrosis protein-protein network (fibrosome) in silico, which predicted that the SMAD3 target neural precursor cell expressed developmentally down-regulated 9 (NEDD9) is a critical ALDO-regulated node underpinning pathogenic vascular fibrosis. Bioinformatics and microscale thermophoresis demonstrated that oxidation of Cys18 in the SMAD3 docking region of NEDD9 impairs SMAD3-NEDD9 protein-protein interactions in vitro. This effect was reproduced by ALDO-induced oxidant stress in cultured human pulmonary artery endothelial cells (HPAECs), resulting in impaired NEDD9 proteolytic degradation, increased NEDD9 complex formation with Nk2 homeobox 5 (NKX2-5), and increased NKX2-5 binding to COL3A1 Up-regulation of NEDD9-dependent collagen III expression corresponded to changes in cell stiffness measured by atomic force microscopy. HPAEC-derived exosomal signaling targeted NEDD9 to increase collagen I/III expression in human pulmonary artery smooth muscle cells, identifying a second endothelial mechanism regulating vascular fibrosis. ALDO-NEDD9 signaling was not affected by treatment with a TGF-β ligand trap and, thus, was not contingent on TGF-β signaling. Colocalization of NEDD9 with collagen III in HPAECs was observed in fibrotic pulmonary arterioles from PAH patients. Furthermore, NEDD9 ablation or inhibition prevented fibrotic vascular remodeling and pulmonary hypertension in animal models of PAH in vivo. These data identify a critical TGF-β-independent posttranslational modification that impairs SMAD3-NEDD9 binding in HPAECs to modulate vascular fibrosis and promote PAH. More Information

Na J, Jung J, Bang J, Lu Q, Carlson BA, Guo X, Gladyshev VN, Kim J, Hatfield DL, Lee BJ. (2018) Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic Biol Med. 127,190-197.

AbstractSelenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the inhibition of cell growth/proliferation, the accumulation of hydrogen peroxide in mammals and an unidentified reactive oxygen species (ROS) in Drosophila, and the activation of a defense system. Hydrogen peroxide accumulation in SEPHS1-deficient cells is mainly caused by the down-regulation of genes involved in ROS scavenging, and leads to the inhibition of cell proliferation and survival. However, the mechanisms underlying SEPHS1 regulation of redox homeostasis are still not understood. More Information

Zhou X, Guang X, Sun D, Xu S, Li M, Seim I, Jie W, Yang L, Zhu Q, Xu J, Gao Q, Kaya A, Dou Q, Chen B, Ren W, Li S, Zhou K, Gladyshev VN, Nielsen R, Fang X, Yang G. (2018) Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun. 9, 1276.

AbstractCetaceans (whales, dolphins, and porpoises) are a group of mammals adapted to various aquatic habitats, from oceans to freshwater rivers. We report the sequencing, de novo assembly and analysis of a finless porpoise genome, and the re-sequencing of an additional 48 finless porpoise individuals. We use these data to reconstruct the demographic history of finless porpoises from their origin to the occupation into the Yangtze River. Analyses of selection between marine and freshwater porpoises identify genes associated with renal water homeostasis and urea cycle, such as urea transporter 2 and angiotensin I-converting enzyme 2, which are likely adaptations associated with the difference in osmotic stress between ocean and rivers. Our results strongly suggest that the critically endangered Yangtze finless porpoises are reproductively isolated from other porpoise populations and harbor unique genetic adaptations, supporting that they should be considered a unique incipient species. More Information

Tarrago L, Oheix E, Péterfi Z, Gladyshev VN. (2018) Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. Methods Mol Biol. 1661, 285-299.

AbstractThe sulfur-containing amino acid methionine (Met) plays critical roles in protein synthesis, methylation, and sulfur metabolism. Both in its free form and in the form of an amino acid residue, it can be oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Organisms evolved methionine sulfoxide reductases (MSRs) to reduce MetO to Met, with the MSRs type A (MSRA) and type B (MSRB) being specific for the S and R forms of MetO, respectively. In mammals, the selenoprotein MSRB1 plays an important protein repair function, and its expression is tightly regulated by dietary selenium. In this chapter, we describe a protocol for determining the concentration of protein-based Met-R-O and its analysis in HEK293 cells using a genetically encoded ratiometric fluorescent biosensor MetROx. We also describe the procedure for quantifying MSR activities in cell extracts using specific substrates and a reverse phase HPLC-based method. More Information

Carlson BA, Lee BJ, Tsuji PA, Copeland PR, Schweizer U, Gladyshev VN, Hatfield DL. (2018) Selenocysteine tRNA[Ser]Sec, the Central Component of Selenoprotein Biosynthesis: Isolation, Identification, Modification, and Sequencing. Methods Mol Bio. 1661, 43-60.

AbstractThe selenocysteine (Sec) tRNA[Ser]Sec population consists of two isoforms that differ from each other by a single 2′-O-methylribosyl moiety at position 34 (Um34). These two isoforms, which are encoded in a single gene, Trsp, and modified posttranscriptionally, are involved individually in the synthesis of two subclasses of selenoproteins, designated housekeeping and stress-related selenoproteins. Techniques used in obtaining these isoforms for their characterization include extraction of RNA from mammalian cells and tissues, purifying the tRNA[Ser]Sec population by one or more procedures, and finally resolving the two isoforms from each other. Since some of the older techniques for isolating tRNA[Ser]Sec and resolving the isoforms are used in only a few laboratories, these procedures will be discussed briefly and references provided for more detailed information, while the more recently developed procedures are discussed in detail. In addition, a novel technique that was developed in sequencing tRNA[Ser]Sec for identifying their occurrence in other organisms is also presented. More Information

Golubev A, Hanson AD, Gladyshev VN. (2018) A tale of two concepts: Harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 29,1003-1017.

AbstractThe two foremost concepts of aging are the mechanistic free radical theory (FRT) of how we age, and the evolutionary antagonistic pleiotropy theory (APT) of why we age. Both date from the late 1950s. The FRT holds that reactive oxygen species (ROS) are the principal contributors to the lifelong cumulative damage suffered by cells, whereas the APT is generally understood as positing that genes that are good for young organisms can take over a population even if they are bad for the old ones. Being related to two sides of the same phenomenon, these theories should be compatible. However, the interface between them is obscured by the FRT mistaking a subset of damaging processes for the whole, and the APT mistaking a cumulative quantitative process for a qualitative switch. Here, we provide a common ground for the two theories by showing how aging can result from the inherent chemical reactivity of many biomolecules, not just ROS, which imposes a fundamental constraint on biological evolution. Chemically reactive metabolites spontaneously modify slowly renewable macromolecules in a continuous way over time; the resulting buildup of damage wrought by the genes coding for enzymes that generate such small molecules eventually masquerades as late-acting pleiotropic effects. In aerobic organisms, ROS are major agents of this damage but they are far from alone. The manifestations of ROS-mediated cumulative chemical damage at the population level may include the often-observed negative correlation between fitness and the rate of its decline with increasing age, further linking FRT and APT. More Information

Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. (2018) Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer. 18, 433-441.

AbstractCancer researchers have traditionally used the mouse and the rat as staple model organisms. These animals are very short-lived, reproduce rapidly and are highly prone to cancer. They have been very useful for modelling some human cancer types and testing experimental treatments; however, these cancer-prone species offer little for understanding the mechanisms of cancer resistance. Recent technological advances have expanded bestiary research to non-standard model organisms that possess unique traits of very high value to humans, such as cancer resistance and longevity. In recent years, several discoveries have been made in non-standard mammalian species, providing new insights on the natural mechanisms of cancer resistance. These include mechanisms of cancer resistance in the naked mole rat, blind mole rat and elephant. In each of these species, evolution took a different path, leading to novel mechanisms. Many other long-lived mammalian species display cancer resistance, including whales, grey squirrels, microbats, cows and horses. Understanding the molecular mechanisms of cancer resistance in all these species is important and timely, as, ultimately, these mechanisms could be harnessed for the development of human cancer therapies. More Information

Zhou X, Sun D, Guang X, Ma S, Fang X, Mariotti M, Nielsen R, Gladyshev VN, Yang G. (2018) Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans. Genome Biol Evol. 10, 967-975.

AbstractCetaceans (whales, dolphins, and porpoises) are a group of specialized mammals that evolved from terrestrial ancestors and are fully adapted to aquatic habitats. Taking advantage of the recently sequenced finless porpoise genome, we conducted comparative analyses of the genomes of seven cetaceans and related terrestrial species to provide insight into the molecular bases of adaptation of these aquatic mammals. Changes in gene sequences were identified in main lineages of cetaceans, offering an evolutionary picture of cetacean genomes that reveal new pathways that could be associated with adaptation to aquatic lifestyle. We profiled bone microanatomical structures across 28 mammals, including representatives of cetaceans, pinnipeds, and sirenians. Subsequent phylogenetic comparative analyses revealed genes (including leptin, insulin-like growth factor 1, and collagen type I alpha 2 chain) with the root-to-tip substitution rate significantly correlated with bone compactness, implicating these genes could be involved in bone mass control. Overall, this study described adjustments of the genomes of cetaceans according to lifestyle, phylogeny, and bone mass. More Information

Sziráki A, Tyshkovskiy A, Gladyshev VN. (2018) Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell. 17, e12738.

AbstractAging is characterized by numerous molecular changes, such as accumulation of molecular damage and altered gene expression, many of which are linked to DNA methylation. Here, we characterize the blood DNA methylome across 16 age groups of mice and report numerous global, region- and site-specific features, as well as the associated dynamics of methylation changes. Transition of the methylome throughout lifespan was not uniform, with many sites showing accelerated changes in late life. The associated genes and promoters were enriched for aging-related pathways, pointing to a fundamental link between DNA methylation and control of the aging process. Calorie restriction both shifted the overall methylation pattern and was accompanied by its gradual age-related remodeling, the latter contributing to the lifespan-extending effect. With age, both highly and poorly methylated sites trended toward intermediate levels, and aging was accompanied by an accelerated increase in entropy, consistent with damage accumulation. However, the entropy effects differed for the sites that increased, decreased and did not change methylation with age. Many sites trailed behind, whereas some followed or even exceeded the entropy trajectory and altered the developmental DNA methylation pattern. The patterns we observed in certain genomic regions were conserved between humans and mice, suggesting common principles of functional DNA methylome remodeling and its critical role in aging. The highly resolved DNA methylome remodeling provides an excellent model for understanding systemic changes that characterize the aging process. More Information

Zhao Y, Tyshkovskiy A, Muñoz-Espín D, Tian X, Serrano M, de Magalhaes JP, Nevo E, Gladyshev VN, Seluanov A, Gorbunova V. (2018) Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proc Natl Acad Sci U S A. 115, 1801-1806.

AbstractCellular senescence is an important anticancer mechanism that restricts proliferation of damaged or premalignant cells. Cellular senescence also plays an important role in tissue remodeling during development. However, there is a trade-off associated with cellular senescence as senescent cells contribute to aging pathologies. The naked mole rat (NMR) (Heterocephalus glaber) is the longest-lived rodent that is resistant to a variety of age-related diseases. Remarkably, NMRs do not show aging phenotypes until very late stages of their lives. Here, we tested whether NMR cells undergo cellular senescence. We report that the NMR displays developmentally programmed cellular senescence in multiple tissues, including nail bed, skin dermis, hair follicle, and nasopharyngeal cavity. NMR cells also underwent cellular senescence when transfected with oncogenic Ras. In addition, cellular senescence was detected in NMR embryonic and skin fibroblasts subjected to γ-irradiation (IR). However, NMR cells required a higher dose of IR for induction of cellular senescence, and NMR fibroblasts were resistant to IR-induced apoptosis. Gene expression analyses of senescence-related changes demonstrated that, similar to mice, NMR cells up-regulated senescence-associated secretory phenotype genes but displayed more profound down-regulation of DNA metabolism, transcription, and translation than mouse cells. We conclude that the NMR displays the same types of cellular senescence found in a short-lived rodent. More Information

Lee BC, Lee HM, Kim S, Avanesov AS, Lee A, Chun BH, Vorbruggen G, Gladyshev VN. (2018) Expression of the methionine sulfoxide reductase lost during evolution extends Drosophila lifespan in a methionine-dependent manner. Sci Rep. 8, 1010.

AbstractAccumulation of oxidized amino acids, including methionine, has been implicated in aging. The ability to reduce one of the products of methionine oxidation, free methionine-R-sulfoxide (Met-R-SO), is widespread in microorganisms, but during evolution this function, conferred by the enzyme fRMsr, was lost in metazoa. We examined whether restoration of the fRMsr function in an animal can alleviate the consequences of methionine oxidation. Ectopic expression of yeast fRMsr supported the ability of Drosophila to catalyze free Met-R-SO reduction without affecting fecundity, food consumption, and response to starvation. fRMsr expression also increased resistance to oxidative stress. Moreover, it extended lifespan of flies in a methionine-dependent manner. Thus, expression of an oxidoreductase lost during evolution can enhance metabolic and redox functions and lead to an increase in lifespan in an animal model. More broadly, our study exposes the potential of a combination of genetic and nutritional strategies in lifespan control. More Information

Yordanova MM, Loughran G, Zhdanov AV, Mariotti M, Kiniry SJ, O’Connor PBF, Andreev DE, Tzani I, Saffert P, Michel AM, Gladyshev VN, Papkovsky DB, Atkins JF, Baranov PV. (2018) AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature. 553, 356-360.

AbstractIn addition to acting as template for protein synthesis, messenger RNA (mRNA) often contains sensory sequence elements that regulate this process. Here we report a new mechanism that limits the number of complete protein molecules that can be synthesized from a single mRNA molecule of the human AMD1 gene encoding adenosylmethionine decarboxylase 1 (AdoMetDC). A small proportion of ribosomes translating AMD1 mRNA stochastically read through the stop codon of the main coding region. These readthrough ribosomes then stall close to the next in-frame stop codon, eventually forming a ribosome queue, the length of which is proportional to the number of AdoMetDC molecules that were synthesized from the same AMD1 mRNA. Once the entire spacer region between the two stop codons is filled with queueing ribosomes, the queue impinges upon the main AMD1 coding region halting its translation. Phylogenetic analysis suggests that this mechanism is highly conserved in vertebrates and existed in their common ancestor. We propose that this mechanism is used to count and limit the number of protein molecules that can be synthesized from a single mRNA template. It could serve to safeguard from dysregulated translation that may occur owing to errors in transcription or mRNA damage. More Information

Ma S, Avanesov AS, Porter E, Lee BC, Mariotti M, Zemskaya N, Guigo R, Moskalev AA, Gladyshev VN. Comparative transcriptomics across 14 Drosophila species reveals signatures of longevity. Aging Cell. e12740.

AbstractLifespan varies dramatically among species, but the biological basis is not well understood. Previous studies in model organisms revealed the importance of nutrient sensing, mTOR, NAD/sirtuins, and insulin/IGF1 signaling in lifespan control. By studying life-history traits and transcriptomes of 14 Drosophila species differing more than sixfold in lifespan, we explored expression divergence and identified genes and processes that correlate with longevity. These longevity signatures suggested that longer-lived flies upregulate fatty acid metabolism, downregulate neuronal system development and activin signaling, and alter dynamics of RNA splicing. Interestingly, these gene expression patterns resembled those of flies under dietary restriction and several other lifespan-extending interventions, although on the individual gene level, there was no significant overlap with genes previously reported to have lifespan-extension effects. We experimentally tested the lifespan regulation potential of several candidate genes and found no consistent effects, suggesting that individual genes generally do not explain the observed longevity patterns. Instead, it appears that lifespan regulation across species is modulated by complex relationships at the system level represented by global gene expression. More Information