2017 Articles
Tang Q, Gu Y, Zhou X, Jin L, Guan J, Liu R, Li J, Long K, Tian S, Che T, Hu S, Liang Y, Yang X, Tao X, Zhong Z, Wang G, Chen X, Li D, Ma J, Wang X, Mai M, Jiang A, Luo X, Lv X, Gladyshev VN, Li X, Li M. (2017) Comparative transcriptomics of 5 high-altitude vertebrates and their low-altitude relatives. Gigascience. 6, 1–9.
Findings – We generated a total of 910 Gb of high-quality RNA-seq data for 180 samples derived from 6 tissues of 5 agriculturally important high-altitude vertebrates (Tibetan chicken, Tibetan pig, Tibetan sheep, Tibetan goat, and yak) and their cross-fertile relatives living in geographically neighboring low-altitude regions. Of these, ∼75% reads could be aligned to their respective reference genomes, and on average ∼60% of annotated protein coding genes in each organism showed FPKM expression values greater than 0.5. We observed a general concordance in topological relationships between the nucleotide alignments and gene expression–based trees. Tissue and species accounted for markedly more variance than altitude based on either the expression or the alternative splicing patterns. Cross-species clustering analyses showed a tissue-dominated pattern of gene expression and a species-dominated pattern for alternative splicing. We also identified numerous differentially expressed genes that could potentially be involved in phenotypic divergence shaped by high-altitude adaptation.
Conclusions – These data serve as a valuable resource for examining the convergence and divergence of gene expression changes between species as they adapt or acclimatize to high-altitude environments. More Information
Kim KY, Kwak GH, Singh MP, Gladyshev VN, Kim HY. (2017) Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. Arch Biochem Biophys. 634, 69-75.
Ma S, Gladyshev VN. (2017) Molecular signatures of longevity: Insights from cross-species comparative studies. Semin Cell Dev Biol. 70, 190-203.
Kaya A, Mariotti M, Gladyshev VN. (2017) Cytochrome c peroxidase facilitates the beneficial use of H2O2 in prokaryotes. Proc Natl Acad Sci U S A. 144, 8678-8680.
Petkovich DA, Podolskiy DI, Lobanov AV, Lee SG, Miller RA, Gladyshev VN. (2017) Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. Cell Metabolism 25, 954-960.
Ke Z, Mallik P, Johnson AB, Luna F, Nevo E, Zhang ZD, Gladyshev VN, Seluanov A, Gorbunova V. (2017) Translation fidelity coevolves with longevity. Aging Cell. 5, 988-993.
Lee BC, Lee SG, Choo MK, Kim JH, Lee HM, Kim S, Fomenko DE, Kim HY, Park JM, Gladyshev VN. (2017) Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci Rep. 7, 5119.
Renko K, Martitz J, Hybsier S, Heynisch B, Voss L, Everley RA, Gygi SP, Stoedter M, Wisniewska M, Köhrle J, Gladyshev VN, Schomburg L. (2017) Aminoglycoside-driven biosynthesis of selenium-deficient Selenoprotein P. Sci Rep. 7, 4391.
Salinas G, Gao W, Wang Y, Bonilla M, Yu L, Novikov A, Virginio VG, Ferreira H, Vieites M, Gladyshev VN, Gambino D, Dai S. (2017) The enzymatic and structural basis for inhibition of Echinococcus granulosus thioredoxin glutathione reductase by gold(I). Antioxid Redox Signal. 27,1491-1504
RESULTS: AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: i) unique monomer-monomer interactions, ii) distinct binding sites for thioredoxin and the glutaredoxin domain, iii) a single glutathione disulfide reduction site in the glutaredoxin domain, iv) rotation of the glutaredoxin domain towards the Sec-containing redox active site, v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site.
INNOVATION: The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments.
CONCLUSIONS: The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center, but also by rotation of the glutaredoxin domain and distinct binding sites for glutaredoxin domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. More Information
Lee SG, Kaya A, Avanesov AS, Podolskiy DI, Song EJ, Go DM, Jin GD, Hwang JY, Kim EB, Kim DY, Gladyshev VN. (2017) Age-associated molecular changes are deleterious and may modulate life span through diet. Sci Adv. 3, e1601833.
Golubev A, Hanson AD, Gladyshev VN. (2017) Non-Enzymatic Molecular Damage as a Prototypic Driver of Aging. J Biol Chem. 292, 6029-6038.
Manta B, Gladyshev VN. (2017) Regulated methionine oxidation by monooxygenases. Free Radic Biol Med. 109, 141-155.
Payne NC, Geissler A, Button A, Sasuclark AR, Schroll AL, Ruggles EL, Gladyshev VN, Hondal RJ. (2017) Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radic Biol Med. 104, 249-261
Moskalev A, Anisimov V, Aliper A, Artemov A, Asadullah K, Belsky D, Baranova A, de Grey A, Dixit VD, Debonneuil E, Dobrovolskaya E, Fedichev P, Fedintsev A, Fraifeld V, Franceschi C, Freer R, Fülöp T, Feige J, Gems D, Gladyshev V, Gorbunova V, Irincheeva I, Jager S, Jazwinski SM, Kaeberlein M, Kennedy B, Khaltourina D, Kovalchuk I, Kovalchuk O, Kozin S, Kulminski A, Lashmanova E, Lezhnina K, Liu GH, Longo V, Mamoshina P, Maslov A, Pedro de Magalhaes J, Mitchell J, Mitnitski A, Nikolsky Y, Ozerov I, Pasyukova E, Peregudova D, Popov V, Proshkina E, Putin E, Rogaev E, Rogina B, Schastnaya J, Seluanov A, Shaposhnikov M, Simm A, Skulachev V, Skulachev M, Solovev I, Spindler S, Stefanova N, Suh Y, Swick A, Tower J, Gudkov AV, Vijg J, Voronkov A, West M, Wagner W, Yashin A, Zemskaya N, Zhumadilov Z, Zhavoronkov A. (2017) A review of the biomedical innovations for healthy longevity. Aging (Albany NY) 9, 7-25.
Lobanov AV, Heaphy SM, Turanov AA, Gerashchenko MV, Pucciarelli S, Devaraj RR, Xie F, Petyuk VA, Smith RD, Klobutcher LA, Atkins JF, Miceli C, Hatfield DL, Baranov PV, Gladyshev VN. (2017) Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat Struct Mol Biol. 24, 61-68.
Heo JY, Cha HN, Kim KY, Lee E, Kim SJ, Kim YW, Kim JY, Lee IK, Gladyshev VN, Kim HY, Park SY. (2017) Methionine sulfoxide reductase B1 deficiency does not increase high-fat diet-induced insulin resistance in mice. Free Radic Res. 51, 24-37.
Gerashchenko MV, Gladyshev VN. (2017) Ribonuclease selection for ribosome profiling. Nucleic Acids Res. 45, e6.
Li M, Chen L, Tian S, Lin Y, Tang Q, Zhou X, Li D, Yeung CK, Che T, Jin L, Fu Y, Ma J, Wang X, Jiang A, Lan J, Pan Q, Liu Y, Luo Z, Guo Z, Liu H, Zhu L, Shuai S, Tang G, Zhao J, Jiang Y, Bai L, Zhang S, Mai M, Li C, Wang D, Gu Y, Wang G, Lu H, Li Y, Zhu H, Li Z, Li M, Gladyshev VN, Jiang Z, Zhao S, Wang J, Li R, Li X. (2017) Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 27, 865-874.