2024 Articles
Griffin PT, Kane AE, Trapp A, Li J, Arnold M, Poganik JR, Conway RJ, McNamara MS, Meer MV, Hoffman N, Amorim JA, Tian X, MacArthur MR, Mitchell SJ, Mueller AL, Carmody C, Vera DL, Kerepesi C, Ying K, Noren Hooten N, Mitchell JR, Evans MK, Gladyshev VN, Sinclair DA. TIME-seq reduces time and cost of DNA methylation measurement for epigenetic clock construction. Nat Aging. doi: 10.1038/s43587-023-00555-2.
Moqri M, Herzog C, Poganik JR, Ying K, Justice JN, Belsky DW, Higgins-Chen AT, Chen BH, Cohen AA, Fuellen G, Hägg S, Marioni RE, Widschwendter M, Fortney K, Fedichev PO, Zhavoronkov A, Barzilai N, Lasky-Su J, Kiel DP, Kennedy BK, Cummings S, Slagboom PE, Verdin E, Maier AB, Sebastiano V, Snyder MP, Gladyshev VN, Horvath S, Ferrucci L. Validation of biomarkers of aging. Nat Med. doi: 10.1038/s41591-023-02784-9.
Ying K, Liu H, Tarkhov AE, Sadler MC, Lu AT, Moqri M, Horvath S, Kutalik Z, Shen X, Gladyshev VN. Causality-enriched epigenetic age uncouples damage and adaptation. Nat Aging. doi: 10.1038/s43587-023-00557-0.
Ali Doğa Yücel, Vadim N Gladyshev. The long and winding road of reprogramming-induced rejuvenation. Nature Communications doi: 10.1038/s41467-024-46020-5.
Wayne Mitchell, Ludger JE Goeminne, Alexander Tyshkovskiy, Sirui Zhang, Julie Y Chen, Joao A Paulo, Kerry A Pierce, Angelina H Choy, Clary B Clish, Steven P Gygi, Vadim N Gladyshev. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. eLife doi: 10.7554/eLife.90579.3.
Polina A Loseva, Vadim N Gladyshev. The beginning of becoming a human. Aging doi: 10.18632/aging.205824
Andrei E Tarkhov, Thomas Lindstrom-Vautrin, Sirui Zhang, Kejun Ying, Mahdi Moqri, Bohan Zhang, Alexander Tyshkovskiy, Orr Levy, Vadim N Gladyshev. Nature of epigenetic aging from a single-cell perspective. Nature Aging doi: 10.1038/s43587-024-00616-0
Mahdi Moqri, Andrea Cipriano, Daniel J Simpson, Sajede Rasouli, Tara Murty, Tineke Anna de Jong, Daniel Nachun, Guilherme de Sena Brandine, Kejun Ying, Andrei Tarkhov, Karolina A Aberg, Edwin van den Oord, Wanding Zhou, Andrew Smith, Crystal Mackall, Vadim N Gladyshev, Steve Horvath, Michael P Snyder, Vittorio Sebastiano. PRC2-AgeIndex as a universal biomarker of aging and rejuvenation. Nature Communications doi: 10.1038/s41467-024-50098-2
Mahdi Moqri, Kejun Ying, Seth Paulson, Alec Eames, Alexander Tyshkovskiy, Siyuan Li, Martin Perez-Guevara, Mehrnoosh Emamifar, Maximiliano Casas Martinez, Dayoon Kwon, Anna Kosheleva, Michael Snyder, Dane Gobel, Chiara Herzog, Jesse Poganik, Vadim Gladyshev. A Unified Framework for Systematic Curation and Evaluation of Aging Biomarkers. Research Square doi: /10.21203/rs.3.rs-4481437/v1
2023 Articles
Li CZ, Haghani A, Yan Q, Lu AT, Zhang J, Fei Z, Ernst J, Yang W, Gladyshev VN, Raj K, Seluanov A, Gorbunova V, Horvath S. Epigenetic predictors of species maximum lifespan and other life history traits in mammals. bioRxiv. doi: https://doi.org/10.1101/2023.01.09.523139
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X. Evolutionary transcriptomics reveals longevity mostly driven by polygenic and indirect selection in mammals. bioRxiv. doi: https://doi.org/10.1101/2023.01.09.523139
Barlit H, Romero AM, Gülhan A, Patnaik PK, Tyshkovskiy A, Martínez-Pastor MT, Gladyshev VN, Puig S, Labunskyy VM. Genome-wide ribosome profiling uncovers the role of iron in the control of protein translation. bioRxiv. doi: https://doi.org/10.1101/2022.09.22.509115
Ying K, Liu H, Tarkhov AE, Sadler MC, Lu AT, Moqri M, Horvath S, Kutalik Z, Shen X, Gladyshev VN. Causality-Enriched Epigenetic Age Uncouples Damage and Adaptation. Nat Aging. doi: 10.1038/s43587-023-00557-0.
Zhang Z, Tian X, Lu JY, Boit K, Ablaeva J, Zakusilo FT, Emmrich S, Firsanov D, Rydkina E, Biashad SA, Lu Q, Tyshkovskiy A, Gladyshev VN, Horvath S, Seluanov A, Gorbunova V. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice. Nature. doi: 10.1038/s41586-023-06463-0.
Kerepesi C, Gladyshev VN. Intersection clock reveals a rejuvenation event during human embryogenesis. Aging Cell. doi: 10.1111/acel.13922.
Tarkhov AE, Lindstrom-Vautrin T, Zhang S, Ying K, Moqri M, Zhang B, Vadim N. Gladyshev. Nature of epigenetic aging from a single-cell perspective. bioRxiv. doi: https://doi.org/10.1101/2022.09.26.509592
Chen Q, Dwaraka VB, Carreras-Gallo N, Mendez K, Chen Y, Begum S, Kachroo P, Prince N, Went H, Mendez T, Lin A, Turner L, Moqri M, Chu SH, Kelly RS, Weiss ST, Rattray NJW, Gladyshev VN, Karlson E, Wheelock C, Mathé EA, Dahlin A, McGeachie MJ, Smith R, Lasky-Su JA. OMICmAge: An integrative multi-omics approach to quantify biological age with electronic medical records. bioRxiv. DOI: 10.1101/2023.10.16.562114
Aguado J, Amarilla AA, Taherian Fard A, Albornoz EA, Tyshkovskiy A, Schwabenland M, Chaggar HK, Modhiran N, Gómez-Inclán C, Javed I, Baradar AA, Liang B, Peng L, Dharmaratne M, Pietrogrande G, Padmanabhan P, Freney ME, Parry R, Sng JDJ, Isaacs A, Khromykh AA, Valenzuela Nieto G, Rojas-Fernandez A, Davis TP, Prinz M, Bengsch B, Gladyshev VN, Woodruff TM, Mar JC, Watterson D, Wolvetang EJ. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. Nat Aging. doi: 10.1038/s43587-023-00519-6.
Poganik JR, Gladyshev VN. We need to shift the focus of aging research to aging itself Proc Natl Acad Sci U S A. DOI: 10.1073/pnas.2307449120
Fernando R, Shindyapina AV, Ost M, Santesmasses D, Hu Y, Tyshkovskiy A, Yim SH, Weiss J, Gladyshev VN, Grune T Castro JP. Downregulation of mitochondrial metabolism is a driver for fast skeletal muscle loss during mouse aging. Commun Biol. doi: 10.1038/s42003-023-05595-3.
Moqri M, Herzog C, Poganik JR; Biomarkers of Aging Consortium; Justice J, Belsky DW, Higgins-Chen A, Moskalev A, Fuellen G, Cohen AA, Bautmans I, Widschwendter M, Ding J, Fleming A, Mannick J, Han JJ, Zhavoronkov A, Barzilai N, Kaeberlein M, Cummings S, Kennedy BK, Ferrucci L, Horvath S, Verdin E, Maier AB, Snyder MP, Sebastiano V, Gladyshev VN. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell. doi: 10.1016/j.cell.2023.08.003.
Tyshkovskiy A, Ma S, Shindyapina AV, Tikhonov S, Lee SG, Bozaykut P, Castro JP, Seluanov A, Schork NJ, Gorbunova V, Dmitriev SE, Miller RA, Gladyshev VN. (2023). Distinct longevity mechanisms across and within species and their association with aging. Cell. doi: 10.1016/j.cell.2023.05.002.
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X.(2023). Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals EMBO J. doi: 10.15252/embj.2022112740.
Ogrodnik M, Gladyshev VN.(2023). The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. Nat Aging. doi: 10.1038/s43587-023-00447-5.
Yang JH, Petty CA, Dixon-McDougall T, Lopez MV, Tyshkovskiy A, Maybury-Lewis S, Tian X, Ibrahim N, Chen Z, Griffin PT, Arnold M, Li J, Martinez OA, Behn A, Rogers-Hammond R, Angeli S, Gladyshev VN, Sinclair DA. (2023). Chemically induced reprogramming to reverse cellular aging. Aging (Albany NY). doi: 10.18632/aging.204896.
Lu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, Li CZ, Lowe R, Yan Q, Zhang J, Vu H, Ablaeva J, Acosta-Rodriguez VA, Adams DM, Almunia J, Aloysius A, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter GG, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke SM, Cooper LN, Cossette ML, Day J, DeYoung J, DiRocco S, Dold C, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Gorbunova V, Goya RG, Grant MJ, Green CB, Hales EN, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Izpisua Belmonte JC, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaitre JF, Levine AJ, Li C, Li X, Lim AR, Lin DTS, Lindemann DM, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, Meudt JJ, Montano GA, Mozhui K, Munshi-South J, Naderi A, Nagy M, Narayan P, Nathanielsz PW, Nguyen NB, Niehrs C, O’Brien JK, O’Tierney Ginn P, Odom DT, Ophir AG, Osborn S, Ostrander EA, Parsons KM, Paul KC, Pellegrini M, Peters KJ, Pedersen AB, Petersen JL, Pietersen DW, Pinho GM, Plassais J, Poganik JR, Prado NA, Reddy P, Rey B, Ritz BR, Robbins J, Rodriguez M, Russell J, Rydkina E, Sailer LL, Salmon AB, Sanghavi A, Schachtschneider KM, Schmitt D, Schmitt T, Schomacher L, Schook LB, Sears KE, Seifert AW, Seluanov A, Shafer ABA, Shanmuganayagam D, Shindyapina AV, Simmons M, Singh K, Sinha I, Slone J, Snell RG, Soltanmaohammadi E, Spangler ML, Spriggs MC, Staggs L, Stedman N, Steinman KJ, Stewart DT, Sugrue VJ, Szladovits B, Takahashi JS, Takasugi M, Teeling EC, Thompson MJ, Van Bonn B, Vernes SC, Villar D, Vinters HV, Wallingford MC, Wang N, Wayne RK, Wilkinson GS, Williams CK, Williams RW, Yang XW, Yao M, Young BG, Zhang B, Zhang Z, Zhao P, Zhao Y, Zhou W, Zimmermann J, Ernst J, Raj K, Horvath S.(2023). Universal DNA methylation age across mammalian tissues. Nat Aging. doi: 10.1038/s43587-023-00462-6.
Tyshkovskiy A, Zhang S, Gladyshev VN. (2023). Accelerated transcriptional elongation during aging impairs longevity. Cell Res. doi: 10.1038/s41422-023-00829-9.
Haghani A, Li CZ, Robeck TR, Zhang J, Lu AT, Ablaeva J, Acosta-Rodríguez VA, Adams DM, Alagaili AN, Almunia J, Aloysius A, Amor NMS, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter G, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chavez AS, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke S, Cook JA, Cooper LN, Cossette ML, Day J, DeYoung J, Dirocco S, Dold C, Dunnum JL, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Fei Z, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Goya RG, Grant MJ, Green CB, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Izpisua Belmonte JC, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaître JF, Levine AJ, Li X, Li C, Lim AR, Lin DTS, Lindemann DM, Liphardt SW, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, Meudt JJ, Montano GA, Mozhui K, Munshi-South J, Murphy WJ, Naderi A, Nagy M, Narayan P, Nathanielsz PW, Nguyen NB, Niehrs C, Nyamsuren B, O’Brien JK, Ginn PO, Odom DT, Ophir AG, Osborn S, Ostrander EA, Parsons KM, Paul KC, Pedersen AB, Pellegrini M, Peters KJ, Petersen JL, Pietersen DW, Pinho GM, Plassais J, Poganik JR, Prado NA, Reddy P, Rey B, Ritz BR, Robbins J, Rodriguez M, Russell J, Rydkina E, Sailer LL, Salmon AB, Sanghavi A, Schachtschneider KM, Schmitt D, Schmitt T, Schomacher L, Schook LB, Sears KE, Seifert AW, Shafer ABA, Shindyapina AV, Simmons M, Singh K, Sinha I, Slone J, Snell RG, Soltanmohammadi E, Spangler ML, Spriggs M, Staggs L, Stedman N, Steinman KJ, Stewart DT, Sugrue VJ, Szladovits B, Takahashi JS, Takasugi M, Teeling EC, Thompson MJ, Van Bonn B, Vernes SC, Villar D, Vinters HV, Vu H, Wallingford MC, Wang N, Wilkinson GS, Williams RW, Yan Q, Yao M, Young BG, Zhang B, Zhang Z, Zhao Y, Zhao P, Zhou W, Zoller JA, Ernst J, Seluanov A, Gorbunova V, Yang XW, Raj K, Horvath S.(2023). DNA methylation networks underlying mammalian traits. Science. doi: 10.1126/science.abq5693.
Vijg J, Schumacher B, Abakir A, Antonov M, Bradley C, Cagan A, Church G, Gladyshev VN, Gorbunova V, Maslov AY, Reik W, Sharifi S, Suh Y, Walsh K (2023). Mitigating age-related somatic mutation burden. Trends Mol Med doi: 10.1016/j.molmed.2023.04.002.
Mitchell W, Goeminne L, Tyshkovskiy A, Zhang S, Paulo J, Pierce K, Choy A, Clish C, Gygi S, Gladyshev VN (2023). Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. bioRxiv doi: https://doi.org/10.1101/2023.06.30.546730
Zhang B, Lee DE, Trapp A, Tyshkovskiy A, Lu AT, Bareja A, Kerepesi C, McKay LK, Shindyapina AV, Dmitriev SE, Baht GS, Horvath S, Gladyshev VN, White JP. (2023). Multi-omic rejuvenation and life span extension on exposure to youthful circulation. Nature Aging doi: 10.1038/s43587-023-00451-9.
Poganik JR, Zhang B, Baht GS, Tyshkovskiy A, Deik A, Kerepesi C, Yim SH, Lu AT, Haghani A, Gong T, Hedman AM, Andolf E, Pershagen G, Almqvist C, Clish CB, Horvath S, White JP, Gladyshev VN. (2023). Biological age is increased by stress and restored upon recovery. Cell Metabolism. doi: 10.1016/j.cmet.2023.03.015.
Ying K, Tyshkovskiy A, Trapp A, Liu H, Moqri M, Kerepesi C, Gladyshev VN (2023). ClockBase: a comprehensive platform for biological age profiling in human and mouse. bioRxiv. doi: 10.1101/2023.02.28.530532
Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, Chew YC, Guo W, Yang X, Maybury-Lewis S, Tian X, Ross JM, Coppotelli G, Meer MV, Rogers-Hammond R, Sinclair DA (2023). Loss of epigenetic information as a cause of mammalian aging. Cell. doi: 10.1016/j.cell.2022.12.027
Moldakozhayev A, & Gladyshev VN (2023). Metabolism, homeostasis, and aging. Trends Endocrinol Metab. doi: 10.1016/j.tem.2023.01.003
Liberman N, Rothi MN, Gerashchenko MV, Zorbas C, Boulias K, MacWhinnie FG, Ying AK, Taylor AF, Haddad JA, Shibuya H, Roach L, Dong A, Dellacona S, Lafontaine DL, Gladyshev VN, Greer EL. 18S rRNA methyltransferases DIMT1 and BUD23 drive intergenerational hormesis. Molecular Cell. doi: https://doi.org/10.1016/j.molcel.2023.08.014
Ying K, Paulson S, Perez-Guevara M, Emamifar M, Martínez MC, Kwon D, Poganik JR, Moqri M, Gladyshev VN. Biolearn, an open-source library for biomarkers of aging. bioRxiv doi: https://doi.org/10.1101/2023.12.02.569722
Firsanov D, Zacher M, Tian X, Zhao Y, George JC, Sformo TL, Tombline G, Biashad SA, Gilman A, Hamilton N, Patel A, Straight M, Lee M, Lu YJ, Haseljic E, Williams A, Miller N, Gladyshev VN, Zhang Z, Vijg J, Seluanov A, Gorbunova V. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. bioRxiv doi: https://doi.org/10.1101/2023.05.07.539748
Ying K, Hanna Liu H, Andrei E. Tarkhov AE, Sadler MC, Lu AT, Moqri M, Horvath S, Kutalik Z, Shen X, Gladyshev VN. Causality-Enriched Epigenetic Age Uncouples Damage and Adaptation. bioRxiv doi: https://doi.org/10.1101/2022.10.07.511382
Bennett DF, Goyala A, Statzer C, Beckett CW, Tyshkovskiy A, Gladyshev VN, Ewald CY, & de Magalhães JP (2023). Rilmenidine extends lifespan and healthspan in Caenorhabditis elegans via a nischarin I1-imidazoline receptor. Aging Cell. doi: 10.1111/acel.13774
2022 Articles
Petra A Tsuji, Didac Santesmasses, Byeong J Lee, Vadim N Gladyshev, Dolph L Hatfield (2022). Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. Int J Mol Sci. doi: 10.3390/ijms23010005
Huafeng Wang, Qianhui Dou, Kyung Jo Jeong, Jungmin Choi, Vadim N Gladyshev, Jean-Ju Chung (2022). Redox regulation by TXNRD3 during epididymal maturation underlies capacitation-associated mitochondrial activity and sperm motility in mice. J Biol Chem. doi: 10.1016/j.jbc.2022.102077
Stephan Emmrich, Alexandre Trapp, Frances Tolibzoda Zakusilo, Maggie E Straight, Albert K Ying, Alexander Tyshkovskiy, Marco Mariotti, Spencer Gray, Zhihui Zhang, Michael G Drage, Masaki Takasugi, Jan-Henning Klusmann , Vadim N Gladyshev, Andrei Seluanov , Vera Gorbunova (2022). Characterization of naked mole-rat hematopoiesis reveals unique stem and progenitor cell patterns and neotenic traits. EMBO J doi: 10.15252/embj.2021109694
Didac Santesmasses, Vadim N Gladyshev (2022). Selenocysteine Machinery Primarily Supports TXNRD1 and GPX4 Functions and Together They Are Functionally Linked with SCD and PRDX6. Biomolecules. Biomolecules doi: 10.3390/biom12081049
Qianhui Dou, Anton A Turanov, Marco Mariotti, Jae Yeon Hwang, Huafeng Wang, Sang-Goo Lee, Joao A Paulo, Sun Hee Yim, Stephen P Gygi, Jean-Ju Chung, Vadim N Gladyshev (2022). Selenoprotein TXNRD3 supports male fertility via the redox regulation of spermatogenesis. J Biol Chem doi: 10.1016/j.jbc.2022.102183
Lionel Tarrago, Alaattin Kaya, Hwa-Young Kim, Bruno Manta, Byung-Cheon Lee , Vadim N Gladyshev(2022) The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2022.08.043
Mahdi Moqri, Andrea Cipriano, Daniel Nachun, Tara Murty, Guilherme de Sena Brandine, Sajede Rasouli, Andrei Tarkhov, Karolina A. Aberg, Edwin van den Oord, Wanding Zhou, Andrew Smith, Crystal Mackall, Vadim Gladyshev, Steve Horvath, Michael P. Snyder, Vittorio Sebastiano (2022) PRC2 clock: a universal epigenetic biomarker of aging and rejuvenation. bioRxiv doi: https://doi.org/10.1101/2022.06.03.49460
Kejun Ying, Hanna Liu, Andrei E. Tarkhov, Ake T. Lu, Steve Horvath, Zoltán Kutalik, Xia Shen, Vadim N. Gladyshev (2022) Causal Epigenetic Age Uncouples Damage and Adaptation. bioRxiv doi: https://doi.org/10.1101/2022.10.07.511382.
Andrei E. Tarkhov, Thomas Lindstrom-Vautrin, Sirui Zhang, Kejun Ying, Mahdi Moqri, Bohan Zhang, Vadim N. Gladyshev (2022) Nature of epigenetic aging from a single-cell perspective. bioRxiv doi: https://doi.org/10.1101/2022.09.26.509592.
Jeyoung Bang, Donghyun Kang, Jisu Jung, Tack-Jin Yoo, Myoung Sup Shim, Vadim N Gladyshev, Petra A Tsuji, Dolph L Hatfield, Jin-Hong Kim, Byeong Jae Lee (2022) SEPHS1: Its evolution, function and roles in development and diseases. Arch Biochem Biophys doi: 10.1016/j.abb.2022.109426.
Bohan Zhang, Andrei E. Tarkhov, Wil Ratzan, Kejun Ying, Mahdi Moqri, Jesse R. Poganik, Benjamin Barre, Alexandre Trapp, Joseph A. Zoller, Amin Haghani, Steve Horvath, Leonid Peshkin, Vadim N. Gladyshev(2022) Epigenetic profiling and incidence of disrupted development point to gastrulation as aging ground zero in Xenopus laevis. bioRxive doi: https://doi.org/10.1101/2022.08.02.502559
Jesse R. Poganik, Bohan Zhang, Gurpreet S. Baht, Csaba Kerepesi, Sun Hee Yim, Ake T. Lu, Amin Haghani, Tong Gong, Anna M. Hedman, Ellika Andolf, Göran Pershagen, Catarina Almqvist, James P. White, Steve Horvath, Vadim N. Gladyshev (2022) Biological age is increased by stress and restored upon recovery. bioRxive doi:https://doi.org/10.1101/2022.05.04.490686
Shindyapina AV, Cho Y, Kaya A, Tyshkovskiy A, Castro JP, Deik A, Gordevicius J, Poganik JR, Clish CB, Horvath S, Peshkin L, Gladyshev VN (2022) Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna. Science Advances 8, 37.
Kerepesi C, Meer MV, Ablaeva J, Amoroso VG, Lee SG, Zhang B, Gerashchenko MV, Trapp A, Yim SH, Lu AT, Levine ME, Seluanov A, Horvath S, Park TJ, Gorbunova V, Gladyshev VN (2022) Epigenetic aging of the demographically non-aging naked mole-rat. Nature Communications 13, 355.
Zhang B, Trapp A, Kerepesi C, Gladyshev VN (2022) Emerging rejuvenation strategies-Reducing the biological age. Aging Cell 21, e13538.
Mariotti M, Kerepesi C, Oliveros W, Mele M, Gladyshev VN (2022) Deterioration of the human transcriptome with age due to increasing intron retention and spurious splicing. bioRxiv, 10.1101/2022.03.14.484341
Meron E, Thaysen M, Angeli S, Antebi A, Barzilai N, Baur JA, Bekker-Jensen S, Birkisdottir M, Bischof E, Bruening J, Brunet A, Buchwalter A, Cabreiro F, Fortney K, Freund A, Georgievskaya A, Gladyshev VN, Glass D, Golato T, Gorbunova V, Hoejimakers J, Houtkooper RH, Jager S, Jaksch F, Janssens G, Jensen MB, Kaeberlein M, Karsenty G, de Keizer P, Kennedy B, Kirkland JL, Kjaer M, Kroemer G, Lee KF, Lemaitre JM, Liaskos D, Longo VD, Lu YX, MacArthur MR, Maier AB, Manakanatas C, Mitchell SJ, Moskalev A, Niedernhofer L, Ozerov I, Partridge L, Passegué E, Petr MA, Peyer J, Radenkovic D, Rando TA, Rattan S, Riedel CG, Rudolph L, Ai R, Serrano M, Schumacher B, Sinclair DA, Smith R, Suh Y, Taub P, Trapp A, Trendelenburg AU, Valenzano DR, Verburgh K, Verdin E, Vijg J, Westendorp RGJ, Zonari A, Bakula D, Zhavoronkov A, Scheibye-Knudsen M (2022) Meeting Report: Aging Research and Drug Discovery. Aging 14, 530-543.
Kang D, Lee J, Jung J, Carlson BA, Chang MJ, Chang CB, Kang SB, Lee BC, Gladyshev VN, Hatfield DL, Lee BJ, Kim JH (2022) Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis. Nature Communications 13, 779.
Lee HM, Choi DW, Kim S, Lee A, Kim M, Roh YJ, Jo YH, Cho HY, Lee HJ, Lee SR, Tarrago L, Gladyshev VN, Kim JH, Lee BC (2022) Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins. ACS Sensors 7, 131-141.
Tian R, Han K, Geng Y, Yang C, Shi C, Thomas PB, Pearce C, Moffatt K, Ma S, Xu S, Yang G, Zhou X, Gladyshev VN, Liu X, Fisher DO, Chopin LK, Leiner NO, Baker AM, Fan G, Seim I (2022) A chromosome-level genome of Antechinus flavipes provides a reference for an Australian marsupial genus with male death after mating. Molecular Ecology Resources 22, 740-754.
2021 Articles
Gladyshev VN, Kritchevsky SB, Clarke SG, Cuervo AM, Fiehn O, de Magalhães JP, Mau T, Maes M, Moritz RL, Niedernhofer LJ, Schaftingen EV, Tranah GJ, Walsh K, Yura Y, Zhang B, Cummings SR (2021) Molecular damage in aging. Nature Aging, 1, 1096–1106
Trapp A, Kerepesi C & Gladyshev VN (2021) Profiling epigenetic age in single cells. Nature Aging, 1, 1189–1201
Zhang B, Lee DE, Trapp A, Tyshkovskiy A, Lu AT, Bareja A, Kerepesi C, Katz LH, Shindyapina AV, Dmitriev SE, Baht GS, Horvath S, Gladyshev VN (2021) Multi-omic rejuvenation and lifespan extension upon exposure to youthful circulation. bioRxiv, 10.1101/2021.11.11.468258
Trapp A & Gladyshev VN (2021) Cost-effective epigenetic age profiling in shallow methylation sequencing data. bioRxiv, 10.1101/2021.10.25.465778
Griffin PT, Kane AE, Trapp A, Li J, McNamara MS, Meer MV, MacArthur MR, Mitchell SJ, Mueller AL, Colleen C, Vera DL, Kerepesi C, Hooten NN, Mitchell JR, Evans MK, Gladyshev VN, Sinclair DA (2021) Ultra-cheap and scalable epigenetic age predictions with TIME-Seq. bioRxiv, 10.1101/2021.10.25.465725
Kerepesi C, Zhang B, Lee SL, Trapp A & Gladyshev VN (2021) Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging. Science Advances 7, eabg6082.
Shindyapina AV, Castro JP, Barbieri A, Strelkova OS, Paulo JA, Kerepesi C, Petrashen AP, Mariotti M, Meer M, Hu Y, Losyev G, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP & Gladyshev VN (2021) Aging predisposes B cells to malignancy by activating c-Myc and perturbing the genome and epigenome. bioRxiv, 10.1101/2021.02.23.432500.
Ying K, Zhai R, Pyrkov TV, Shindyapina AV, Mariotti M, Fedichev PO, Shen X &; Gladyshev VN (2021) Genetic and phenotypic analysis of the causal relationship between aging and COVID-19. Communications Medicine 5, e2144.
Jin L, Tang Q, Hu S, Chen Z, Zhou X, Zeng B, Wang Y, He M, Li Y, Gui L, Shen L, Long K, Ma J, Wang X, Chen Z, Jiang Y, Tang G, Zhu L, Liu F, Zhang B, Huang Z, Li G, Li D, Gladyshev VN, Yin J, Gu Y, Li X & Li M (2021) A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nature Communications 12, 3715.
Zhang L, Dong X, Tian X, Lee M, Ablaeva J, Firsanov D, Lee SG, Maslov AY, Gladyshev VN, Seluanov A, Gorbunova V & Vijg J (2021) Maintenance of genome sequence integrity in long- and short-lived rodent species. Science Advances 7, eabj3284.
Emmrich S, Tolibzoda Zakusilo F, Trapp A, Zhou X, Zhang Q, Irving EM, Drage MG, Zhang Z, Gladyshev VN, Seluanov A & Gorbunova V (2021) Ectopic cervical thymi and no thymic involution until midlife in naked mole rats. Aging Cell 20, e13477.
Gladyshev VN (2021) The Ground Zero of Organismal Life and Aging. Trends in Molecular Medicine, 27, 11-19
Ristow M, Lee CH, De Bock K, Gladyshev VN, Hotamisligil GS & Manning BD (2021) James R. Mitchell (1971-2020). Cell Metabolism 33, 458-461
Augereau A, Mariotti M, Pousse M, Filipponi D, Libert F, Beck B, Gorbunova V, Gilson E & Gladyshev VN (2021) Naked mole rat TRF1 safeguards glycolytic capacity and telomere replication under low oxygen. Science Advances , 7, eabe0174
Kaya A, Phua CZJ, Lee M, Wang L, Tyshkovskiy A, Ma S, Barre B, Liu W, Harrison BR, Zhao X, Zhou X, Wasko BM, Bammler TK, Promislow DE, Kaeberlein M & Gladyshev VN (2021) Evolution of natural lifespan variation and molecular strategies of extended lifespan. eLife, 10:e64860.
Tian R, Han K, Geng Y, Yang C, Guo H, Shi C, Xu S, Yang G, Zhou X, Gladyshev VN, Liu X, Chopin LK, Fisher DO, Baker AM, Leiner NO, Fan G & Seim I (2021) A Chromosome-Level Genome of the Agile Gracile Mouse Opossum (Gracilinanus agilis). Molecular Biology and Evolution 13, evab162.
Khera N, Santesmasses D, Kerepesi C & Gladyshev VN (2021) COVID-19 mortality rate in children is U-shaped. Aging 13, 19954-19962.
Tian R, Han K, Geng Y, Yang C, Shi C, Thomas PB, Pearce C, Moffatt K, Ma S, Xu S, Yang G, Zhou X, Gladyshev VN, Liu X, Fisher DO, Chopin LK, Leiner NO, Baker AM, Fan G & Seim I (2021) A chromosome-level genome of Antechinus flavipes provides a reference for an Australian marsupial genus with male death after mating. Molecular Ecology Resources, 22 740-754.
Moldakozhayev A, Tskhay A & Gladyshev VN (2021) Applying deductive reasoning and the principles of particle physics to aging research. Aging, 13 22611-22622.
Egorov AA, Alexandrov AI, Urakov VN, Makeeva DS, Edakin RO, Kushchenko AS, Gladyshev VN, Kulakovskiy IV & Dmitriev SE. (2021) A standard knockout procedure alters expression of adjacent loci at the translational level. International Journal of Molecular Sciences49 11134.
Canter JA, Ernst SE, Peters KM, Carlson BA, Thielman NRJ, Grysczyk L, Udofe P, Yu Y, Cao L, Davis CD, Gladyshev VN, Hatfield DL & Tsuji PA (2021) Selenium and the 15kDa Selenoprotein Impact Colorectal Tumorigenesis by Modulating Intestinal Barrier Integrity. International Journal of Molecular Sciences, 22 10651.
Omotoso O, Gladyshev VN & Zhou X (2021) Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Frontiers in Cell and Developmental Biology, 9 704966.
Zhang Q, Tombline G, Ablaeva J, Zhang L, Zhou X, Smith Z, Zhao Y, Xiaoli AM, Wang Z, Lin JR, Jabalameli MR, Mitra J, Nguyen N, Vijg J, Seluanov A, Gladyshev VN, Gorbunova V & Zhang ZD (2021) Genomic expansion of Aldh1a1 protects beavers against high metabolic aldehydes from lipid oxidation. Cell Reports, 37 109965.
Santesmasses D & Gladyshev VN (2021) Pathogenic Variants in Selenoproteins and Selenocysteine Biosynthesis Machinery. International Journal of Molecular Sciences, 22 11593.
Bang J, Han M, Yoo TJ, Qiao L, Jung J, Na J, Carlson BA, Gladyshev VN, Hatfield DL, Kim JH, Kim LK & Lee BJ. (2021) Identification of Signaling Pathways for Early Embryonic Lethality and Developmental Retardation in Sephs1-/- Mice. International Journal of Molecular Sciences, 22 11647.
Gerashchenko MV, Peterfi Z, Yim SH & Gladyshev VN (2021) Translation elongation rate varies among organs and decreases with age. Nucleic Acids Research, 49 e9
Vorontsov IE, Egorov AA, Anisimova AS, Eliseeva IA, Makeev VJ, Gladyshev VN, Dmitriev SE & Kulakovskiy IV (2021) Assessing Ribosome Distribution Along Transcripts with Polarity Scores and Regression Slope Estimates. Methods in Molecular Medicine, 2252:269-294. doi: 10.1007/978-1-0716-1150-0_13
Mammalian Methylation Consortium (2021) Universal DNA methylation age across mammalian tissues. bioRxiv, 10.1101/2021.01.18.426733
Haghani A, Lu AT, Li CZ, Robeck TR, Belov K, Breeze CE, Brooke RT, Clarke S, Faulkes CG, Fei Z, Ferguson SH, Finno CJ, Gladyshev VN, Gorbunova V, Goya RG, Hogan AN, Hogg CJ, Hore TA, Kiaris H, Kordowitzki P, Banks G, Koski WR, Mozhui K, Naderi A, Ostrander EA, Parsons KM, Plassais J, Robbins J, Sears KE, Seluanov A, Steinman KJ, Szladovits B, Thompson MJ, Villar D, Wang N, Wilkinson GS, Young BG, Zhang J, Zoller JA, Ernst J, Yang XW, Raj K & S. Horvath. (2021) DNA Methylation Networks Underlying Mammalian Traits. bioRxiv, 10.1101/2021.03.16.435708.
Gerashchenko MV & Gladyshev VN (2021) Measuring Organ-Specific Translation Elongation Rate in Mice. Methods in Molecular Biology 2252, 189-200.
Choi DW, Roh YJ, Kim S, Lee HM, Kim M, Shin D, Park JH, Cho Y, Park HH, Ok YS, Kang D, Kim JH, Tarrago L, Danial NN, Gladyshev VN, Min PK & Lee BC (2021) Development of a novel fluorescent biosensor for dynamic monitoring of metabolic methionine redox status in cells and tissues. Biosensors and Bioelectronics 178, 113031.
2020 Articles
Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, Vera DL, Zeng Q, Yu D, Bonkowski MS, Yang JH, Zhou S, Hoffmann EM, Karg MM, Schultz MB, Kane AE, Davidsohn N, Korobkina E, Chwalek K, Rajman LA, Church GM, Hochedlinger K, Gladyshev VN, Horvath S, Levine ME, Gregory-Ksander MS, Ksander BR, He Z, Sinclair DA. (2020) Reprogramming to recover youthful epigenetic information and restore vision. Nature. 588(7836)
Zoonomia Consortium. (2020) A comparative genomics multitool for scientific discovery and conservation. Nature. 587(7833)
Mkrtchyan GV, Abdelmohsen K, Andreux P, Bagdonaite I, Barzilai N, Brunak S, Cabreiro F, de Cabo R, Campisi J, Cuervo AM, Demaria M, Ewald CY, Fang EF, Faragher R, Ferrucci L, Freund A, Silva-García CG, Georgievskaya A, Gladyshev VN, Glass DJ, Gorbunova V, de Grey A, He WW, Hoeijmakers J, Hoffmann E, Horvath S, Houtkooper RH, Jensen MK, Jensen MB, Kane A, Kassem M, de Keizer P, Kennedy B, Karsenty G, Lamming DW, Lee KF, MacAulay N, Mamoshina P, Mellon J, Molenaars M, Moskalev A, Mund A, Niedernhofer L, Osborne B, Pak HH, Parkhitko A, Raimundo N, Rando TA, Rasmussen LJ, Reis C, Riedel CG, Franco-Romero A, Schumacher B, Sinclair DA, Suh Y, Taub PR, Toiber D, Treebak JT, Valenzano DR, Verdin E, Vijg J, Young S, Zhang L, Bakula D, Zhavoronkov A, Scheibye-Knudsen M. (2020) ARDD 2020: from aging mechanisms to interventions. Aging. 12(24)
Gerashchenko MV, Peterfi Z, Yim SH, Gladyshev VN. (2020) Translation elongation rate varies among organs and decreases with age. Nucleic Acids Res.
Santesmasses D, Castro JP, Zenin AA, Shindyapina AV, Gerashchenko MV, Zhang B, Kerepesi C, Yim SH, Fedichev PO, Gladyshev VN. (2020) COVID-19 is an emergent disease of aging. Aging Cell. 19(10)
Gerashchenko MV, Nesterchuk MV, Smekalova EM, Paulo JA, Kowalski PS, Akulich KA, Bogorad R, Dmitriev SE, Gygi S, Zatsepin T, Anderson DG, Gladyshev VN, Koteliansky VE. (2020) Translation elongation factor 2 depletion by siRNA in mouse liver leads to mTOR-independent translational upregulation of ribosomal protein genes. Scientific Reports. 10(1), 15473.
Pawelec G, Bronikowski A, Cunnane SC, Ferrucci L, Franceschi C, Fülöp T, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Kennedy BK, Larbi A, Lemaître JF, Liu GH, Maier AB, Morais JA, Nóbrega OT, Moskalev A, Rikkert MO, Seluanov A, Senior AM, Ukraintseva S, Van Haelen Q, Witkowski J, Cohen AA. (2020) The conundrum of human immune system “senescence”. Mechanisms of ageing and development. 192, 10.1016/j.mad.2020.111357.
Konstantinidis K, Bezzerides VJ, Lai L, Isbell HM, Wei AC, Wu Y, Viswanathan MC, Blum ID, Granger JM, Heims-Waldron D, Zhang D, Luczak ED, Murphy KR, Lu F, Gratz DH, Manta B, Wang Q, Wang Q, Kolodkin AL, Gladyshev VN, Hund TJ, Pu WT, Wu MN, Cammarato A, Bianchet MA, Shea MA, Levine RL, Anderson ME. (2020) MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII. J Clin Invest. 130(9), 4663-4687.
Zhou X, Dou Q, Fan G, Zhang Q, Sanderford M, Kaya A, Johnson J, Karlsson EK, Tian X, Mikhalchenko A, Kumar S, Seluanov A, Zhang ZD, Gorbunova V, Liu X, Gladyshev VN. (2020) Beaver and Naked Mole Rat Genomes Reveal Common Paths to Longevity. Cell Rep. 32(4), 107949.
Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, Ferbeyre G, Ferrucci L, Franceschi C, Frasca D, Friguet B, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Gut P, Ivanchenko M, Legault V, Lemaître JF, Liontis T, Liu GH, Liu M, Maier AB, Nóbrega OT, Olde Rikkert MGM, Pawelec G, Rheault S, Senior AM, Simm A, Soo S, Traa A, Ukraintseva S, Vanhaelen Q, Van Raamsdonk JM, Witkowski JM, Yashin AI, Ziman R, Fülöp T. (2020) Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev. 191, 111316.
Anisimova AS, Meerson MB, Gerashchenko MV, Kulakovskiy IV, Dmitriev SE, Gladyshev VN. (2020) Multifaceted deregulation of gene expression and protein synthesis with age. Proc Natl Acad Sci U S A. 117(27), 15581-15590.
Lashkevich KA, Shlyk VI, Kushchenko AS, Gladyshev VN, Alkalaeva EZ, Dmitriev SE. (2020) CTELS: A Cell-Free System for the Analysis of Translation Termination Rate. Biomolecules. 10(6), 911.
Sanchez-Lopez C, Labadie N, Lombardo V, Biglione F, Manta B, Jacob R, Gladyshev VN, Abdelilah-Seyfried S, Selenko P, Binolfi A. (2020) An NMR-based biosensor to measure stereo-specific methionine sulfoxide reductase (MSR) activities in vitro and in vivo. Chemistry.
Galkin F, Mamoshina P, Aliper A, Putin E, Moskalev V, Gladyshev VN, Zhavoronkov A. (2020) Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. iScience. 23(6), 101199.
Liberman N, O’Brown ZK, Earl AS, Boulias K, Gerashchenko MV, Wang SY, Fritsche C, Fady PE, Dong A, Gladyshev VN, Greer EL. (2020) N6-adenosine methylation of ribosomal RNA affects lipid oxidation and stress resistance. Sci Adv. 6(17), eaaz4370.
Bozaykut P, Ekren R, Sezerman OU, Gladyshev VN, Ozer NK. (2020) High-throughput profiling reveals perturbation of endoplasmic reticulum stress-related genes in atherosclerosis induced by high-cholesterol diet and the protective role of vitamin E. Biofactors.
Jedrychowski MP, Lu GZ, Szpyt J, Mariotti M, Garrity R, Paulo JA, Schweppe DK, Laznik-Bogoslavski D, Kazak L, Murphy MP, Gladyshev VN, Gygi SP, Chouchani ET, Spiegelman BM. (2020) Facultative protein selenation regulates redox sensitivity, adipose tissue thermogenesis, and obesity. Proc Natl Acad Sci U S A. 117(20), 10789-10796.
Zhang B, Podolskiy DI, Mariotti M, Seravalli J, Gladyshev VN. (2020) Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell. 19(5), e13119.
Zhang B, Gladyshev VN. (2020) How can aging be reversed? Exploring rejuvenation from a damage‐based perspective. Advanced Genetics. 1(1), e10025.
Galkin F, Mamoshina P, Aliper A, de Magalhães JP, Gladyshev VN, Zhavoronkov A. (2020) Biohorology and biomarkers of aging: Current state-of-the-art, challenges and opportunities. Ageing Res Rev. 60, 101050.
Shindyapina AV, Zenin AA, Tarkhov AE, Santesmasses D, Fedichev PO, Gladyshev VN. (2020) Germline burden of rare damaging variants negatively affects human healthspan and lifespan. eLife 9, 53449.
Fernando R, Wardelmann K, Deubel S, Kehm R, Jung T, Mariotti M, Vasilaki A, Gladyshev VN, Kleinridders A, Grune T, Castro JP. (2020) Low steady-state oxidative stress inhibits adipogenesis by altering mitochondrial dynamics and decreasing cellular respiration. Redox Biol. 32, 101507.
Santesmasses D, Mariotti M, Gladyshev VN. (2020) Bioinformatics of Selenoproteins. Antioxid Redox Signal. 33(7), 525-536.
Kaya A, Mariotti M, Tyshkovskiy A, Zhou X, Hulke ML, Ma S, Gerashchenko MV, Koren A, Gladyshev VN. (2020) Molecular signatures of aneuploidy-driven adaptive evolution. Nat Commun. 11(1), 588.
Smekalova EM, Gerashchenko MV, O’Connor PBF, Whittaker CA, Kauffman KJ, Fefilova AS, Zatsepin TS, Bogorad RL, Baranov PV, Langer R, Gladyshev VN, Anderson DG, Koteliansky V. (2020) In Vivo RNAi-Mediated eIF3m Knockdown Affects Ribosome Biogenesis and Transcription but Has Limited Impact on mRNA-Specific Translation. Mol Ther Nucleic Acids. 19, 252-266.
Santesmasses D, Mariotti M, Gladyshev VN. (2020) Tolerance to Selenoprotein Loss Differs between Human and Mouse. Mol Biol Evol. 37(2), 341-354.
2019 Articles
Kinzina ED, Podolskiy DI, Dmitriev SE, Gladyshev VN. (2019) Patterns of Aging Biomarkers, Mortality, and Damaging Mutations Illuminate the Beginning of Aging and Causes of Early-Life Mortality. Cell Rep. 29(13), 4276-4284.
Bakula D, Ablasser A, Aguzzi A, Antebi A, Barzilai N, Bittner MI, Jensen MB, Calkhoven CF, Chen D, de Grey ADNJ, Feige JN, Georgievskaya A, Gladyshev VN, Golato T, Gudkov AV, Hoppe T, Kaeberlein M, Katajisto P, Kennedy BK, Lal U, Martin-Villalba A, Moskalev AA, Ozerov I, Petr MA, Reason, Rubinsztein DC, Tyshkovskiy A, Vanhaelen Q 31, Zhavoronkov A, Scheibye-Knudsen M. (2019) Latest advances in aging research and drug discovery. Aging (Albany NY). 11(22), 9971-9981.
Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S, Ideker T, Issa JPJ, Kelsey KT, Marioni RE, Reik W, Relton CL, Schalkwyk LC, Teschendorff AE, Wagner W, Zhang K, Rakyan VK. (2019) DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20(1), 249.
Baclaocos J, Santesmasses D, Mariotti M, Bierła K, Vetick MB, Lynch S, McAllen R, Mackrill JJ, Loughran G, Guigó R, Szpunar J, Copeland PR, Gladyshev VN, Atkins JF. (2019) Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs. J Mol Biol. 431(22), 4381-4407.
Tyshkovskiy A, Bozaykut P, Borodinova AA, Gerashchenko MV, Ables GP, Garratt M, Khaitovich P, Clish CB, Miller RA, Gladyshev VN. (2019) Identification and Application of Gene Expression Signatures Associated with Lifespan Extension. Cell Metab. 30(3), 573-593.
Yim SH, Clish CB, Gladyshev VN. (2019) Selenium Deficiency Is Associated with Pro-longevity Mechanisms. Cell Rep. 27(9), 2785-2797.
Mariotti M, Salinas G, Gabaldón T, Gladyshev VN. (2019) Utilization of selenocysteine in early-branching fungal phyla. Nat Microbiol. 4(5), 759-765.
Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T, De Cecco M, Leonova KI, Kogan V, Helfand SL, Neretti N, Roichman A, Cohen HY, Meer MV, Gladyshev VN, Antoch MP, Gudkov AV, Sedivy JM, Seluanov A, Gorbunova V. (2019) LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation. Cell Metab. 29, e5.
Egorov AA, Sakharova EA, Anisimova AS, Dmitriev SE, Gladyshev VN, Kulakovskiy IV. (2019) svis4get: a simple visualization tool for genomic tracks from sequencing experiments. BMC Bioinformatics. 20, 113.
O’Connell AE, Gerashchenko MV, O’Donohue MF, Rosen SM, Huntzinger E, Gleeson D, Galli A, Ryder E, Cao S, Murphy Q, Kazerounian S, Morton SU, Schmitz-Abe K, Gladyshev VN, Gleizes PE, Séraphin B, Agrawal PB. (2019) Mammalian Hbs1L deficiency causes congenital anomalies and developmental delay associated with Pelota depletion and 80S monosome accumulation. PLoS Genet. 15, e1007917.
Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, Tan R, Simon M, Henderson S, Steffan J, Goldfarb A, Tam J, Zheng K, Cornwell A, Johnson A, Yang JN, Mao Z, Manta B, Dang W, Zhang Z, Vijg J, Wolfe A, Moody K, Kennedy BK, Bohmann D, Gladyshev VN, Seluanov, Gorbunova V. (2019) SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 177, 622-638.e22.
Ogrodnik M, Salmonowicz H, Gladyshev VN. (2019) Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Agin Cell. 18, e12841.
Galkin F, Zhang B, Dmitriev SE, Gladyshev VN. (2019) Reversibility of irreversible aging. Ageing Res Rev. 49, 104-114.
2018 Articles
Zhang Y, Lee JH, Paull TT, Gehrke S, D’Alessandro A, Dou Q, Gladyshev VN, Schroeder EA, Steyl SK, Christian BE, Shadel GS. (2018) Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci Signal. 11, 538.
Na J, Jung J, Bang J, Lu Q, Carlson BA, Guo X, Gladyshev VN, Kim J, Hatfield DL, Lee BJ. (2018) Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic Biol Med. 127,190-197.
Zhou X, Guang X, Sun D, Xu S, Li M, Seim I, Jie W, Yang L, Zhu Q, Xu J, Gao Q, Kaya A, Dou Q, Chen B, Ren W, Li S, Zhou K, Gladyshev VN, Nielsen R, Fang X, Yang G. (2018) Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun. 9, 1276.
Tarrago L, Oheix E, Péterfi Z, Gladyshev VN. (2018) Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. Methods Mol Biol. 1661, 285-299.
Carlson BA, Lee BJ, Tsuji PA, Copeland PR, Schweizer U, Gladyshev VN, Hatfield DL. (2018) Selenocysteine tRNA[Ser]Sec, the Central Component of Selenoprotein Biosynthesis: Isolation, Identification, Modification, and Sequencing. Methods Mol Bio. 1661, 43-60.
Golubev A, Hanson AD, Gladyshev VN. (2018) A tale of two concepts: Harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 29,1003-1017.
Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. (2018) Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer. 18, 433-441.
Zhou X, Sun D, Guang X, Ma S, Fang X, Mariotti M, Nielsen R, Gladyshev VN, Yang G. (2018) Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans. Genome Biol Evol. 10, 967-975.
Sziráki A, Tyshkovskiy A, Gladyshev VN. (2018) Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell. 17, e12738.
Zhao Y, Tyshkovskiy A, Muñoz-Espín D, Tian X, Serrano M, de Magalhaes JP, Nevo E, Gladyshev VN, Seluanov A, Gorbunova V. (2018) Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proc Natl Acad Sci U S A. 115, 1801-1806.
Lee BC, Lee HM, Kim S, Avanesov AS, Lee A, Chun BH, Vorbruggen G, Gladyshev VN. (2018) Expression of the methionine sulfoxide reductase lost during evolution extends Drosophila lifespan in a methionine-dependent manner. Sci Rep. 8, 1010.
Yordanova MM, Loughran G, Zhdanov AV, Mariotti M, Kiniry SJ, O’Connor PBF, Andreev DE, Tzani I, Saffert P, Michel AM, Gladyshev VN, Papkovsky DB, Atkins JF, Baranov PV. (2018) AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature. 553, 356-360.
2017 Articles
Tang Q, Gu Y, Zhou X, Jin L, Guan J, Liu R, Li J, Long K, Tian S, Che T, Hu S, Liang Y, Yang X, Tao X, Zhong Z, Wang G, Chen X, Li D, Ma J, Wang X, Mai M, Jiang A, Luo X, Lv X, Gladyshev VN, Li X, Li M. (2017) Comparative transcriptomics of 5 high-altitude vertebrates and their low-altitude relatives. Gigascience. 6, 1–9.
Findings – We generated a total of 910 Gb of high-quality RNA-seq data for 180 samples derived from 6 tissues of 5 agriculturally important high-altitude vertebrates (Tibetan chicken, Tibetan pig, Tibetan sheep, Tibetan goat, and yak) and their cross-fertile relatives living in geographically neighboring low-altitude regions. Of these, ∼75% reads could be aligned to their respective reference genomes, and on average ∼60% of annotated protein coding genes in each organism showed FPKM expression values greater than 0.5. We observed a general concordance in topological relationships between the nucleotide alignments and gene expression–based trees. Tissue and species accounted for markedly more variance than altitude based on either the expression or the alternative splicing patterns. Cross-species clustering analyses showed a tissue-dominated pattern of gene expression and a species-dominated pattern for alternative splicing. We also identified numerous differentially expressed genes that could potentially be involved in phenotypic divergence shaped by high-altitude adaptation.
Conclusions – These data serve as a valuable resource for examining the convergence and divergence of gene expression changes between species as they adapt or acclimatize to high-altitude environments. More Information
Kim KY, Kwak GH, Singh MP, Gladyshev VN, Kim HY. (2017) Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. Arch Biochem Biophys. 634, 69-75.
Ma S, Gladyshev VN. (2017) Molecular signatures of longevity: Insights from cross-species comparative studies. Semin Cell Dev Biol. 70, 190-203.
Kaya A, Mariotti M, Gladyshev VN. (2017) Cytochrome c peroxidase facilitates the beneficial use of H2O2 in prokaryotes. Proc Natl Acad Sci U S A. 144, 8678-8680.
Petkovich DA, Podolskiy DI, Lobanov AV, Lee SG, Miller RA, Gladyshev VN. (2017) Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. Cell Metabolism 25, 954-960.
Ke Z, Mallik P, Johnson AB, Luna F, Nevo E, Zhang ZD, Gladyshev VN, Seluanov A, Gorbunova V. (2017) Translation fidelity coevolves with longevity. Aging Cell. 5, 988-993.
Lee BC, Lee SG, Choo MK, Kim JH, Lee HM, Kim S, Fomenko DE, Kim HY, Park JM, Gladyshev VN. (2017) Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci Rep. 7, 5119.
Renko K, Martitz J, Hybsier S, Heynisch B, Voss L, Everley RA, Gygi SP, Stoedter M, Wisniewska M, Köhrle J, Gladyshev VN, Schomburg L. (2017) Aminoglycoside-driven biosynthesis of selenium-deficient Selenoprotein P. Sci Rep. 7, 4391.
Salinas G, Gao W, Wang Y, Bonilla M, Yu L, Novikov A, Virginio VG, Ferreira H, Vieites M, Gladyshev VN, Gambino D, Dai S. (2017) The enzymatic and structural basis for inhibition of Echinococcus granulosus thioredoxin glutathione reductase by gold(I). Antioxid Redox Signal. 27,1491-1504
RESULTS: AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: i) unique monomer-monomer interactions, ii) distinct binding sites for thioredoxin and the glutaredoxin domain, iii) a single glutathione disulfide reduction site in the glutaredoxin domain, iv) rotation of the glutaredoxin domain towards the Sec-containing redox active site, v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site.
INNOVATION: The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments.
CONCLUSIONS: The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center, but also by rotation of the glutaredoxin domain and distinct binding sites for glutaredoxin domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. More Information
Lee SG, Kaya A, Avanesov AS, Podolskiy DI, Song EJ, Go DM, Jin GD, Hwang JY, Kim EB, Kim DY, Gladyshev VN. (2017) Age-associated molecular changes are deleterious and may modulate life span through diet. Sci Adv. 3, e1601833.
Golubev A, Hanson AD, Gladyshev VN. (2017) Non-Enzymatic Molecular Damage as a Prototypic Driver of Aging. J Biol Chem. 292, 6029-6038.
Manta B, Gladyshev VN. (2017) Regulated methionine oxidation by monooxygenases. Free Radic Biol Med. 109, 141-155.
Payne NC, Geissler A, Button A, Sasuclark AR, Schroll AL, Ruggles EL, Gladyshev VN, Hondal RJ. (2017) Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radic Biol Med. 104, 249-261
Moskalev A, Anisimov V, Aliper A, Artemov A, Asadullah K, Belsky D, Baranova A, de Grey A, Dixit VD, Debonneuil E, Dobrovolskaya E, Fedichev P, Fedintsev A, Fraifeld V, Franceschi C, Freer R, Fülöp T, Feige J, Gems D, Gladyshev V, Gorbunova V, Irincheeva I, Jager S, Jazwinski SM, Kaeberlein M, Kennedy B, Khaltourina D, Kovalchuk I, Kovalchuk O, Kozin S, Kulminski A, Lashmanova E, Lezhnina K, Liu GH, Longo V, Mamoshina P, Maslov A, Pedro de Magalhaes J, Mitchell J, Mitnitski A, Nikolsky Y, Ozerov I, Pasyukova E, Peregudova D, Popov V, Proshkina E, Putin E, Rogaev E, Rogina B, Schastnaya J, Seluanov A, Shaposhnikov M, Simm A, Skulachev V, Skulachev M, Solovev I, Spindler S, Stefanova N, Suh Y, Swick A, Tower J, Gudkov AV, Vijg J, Voronkov A, West M, Wagner W, Yashin A, Zemskaya N, Zhumadilov Z, Zhavoronkov A. (2017) A review of the biomedical innovations for healthy longevity. Aging (Albany NY) 9, 7-25.
Lobanov AV, Heaphy SM, Turanov AA, Gerashchenko MV, Pucciarelli S, Devaraj RR, Xie F, Petyuk VA, Smith RD, Klobutcher LA, Atkins JF, Miceli C, Hatfield DL, Baranov PV, Gladyshev VN. (2017) Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat Struct Mol Biol. 24, 61-68.
Heo JY, Cha HN, Kim KY, Lee E, Kim SJ, Kim YW, Kim JY, Lee IK, Gladyshev VN, Kim HY, Park SY. (2017) Methionine sulfoxide reductase B1 deficiency does not increase high-fat diet-induced insulin resistance in mice. Free Radic Res. 51, 24-37.
Gerashchenko MV, Gladyshev VN. (2017) Ribonuclease selection for ribosome profiling. Nucleic Acids Res. 45, e6.
Li M, Chen L, Tian S, Lin Y, Tang Q, Zhou X, Li D, Yeung CK, Che T, Jin L, Fu Y, Ma J, Wang X, Jiang A, Lan J, Pan Q, Liu Y, Luo Z, Guo Z, Liu H, Zhu L, Shuai S, Tang G, Zhao J, Jiang Y, Bai L, Zhang S, Mai M, Li C, Wang D, Gu Y, Wang G, Lu H, Li Y, Zhu H, Li Z, Li M, Gladyshev VN, Jiang Z, Zhao S, Wang J, Li R, Li X. (2017) Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 27, 865-874.
2016 Articles
Seim I, Ma S, Gladyshev VN. (2016) Gene expression signatures of human cell and tissue longevity. NPJ Aging Mech Dis. 7, 16014.
Podolskiy DI, Lobanov AV, Kryukov GV, Gladyshev VN. (2016) Analysis of cancer genomes reveals basic features of human aging and its role in cancer development. Nature Commun. 7, 12157.
Ma S, Upneja A, Galecki A, Tsai YM, Burant CF, Raskind S, Zhang Q, Zhang ZD, Seluanov A, Gorbunova V, Clish CB, Miller RA, Gladyshev VN. (2016) Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. Elife 5, e19130.
Gladyshev TV, Gladyshev VN. (2016) A Disease or Not a Disease? Aging As a Pathology. Trends Mol Med. S1471-4914, 30142-30143.
Gladyshev VN, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA, Burk RF, Carlson BA, Castellano S, Chavatte L, Conrad M, Copeland PR, Diamond AM, Driscoll DM, Ferreiro A, Flohé L, Green FR, Guigó R, Handy DE, Hatfield DL, Hesketh J, Hoffmann PR, Holmgren A, Hondal RJ, Howard MT, Huang K, Kim HY, Kim IY, Köhrle J, Krol A, Kryukov GV, Lee BJ, Lee BC, Lei XG, Liu Q, Lescure A, Lobanov AV, Loscalzo J, Maiorino M, Mariotti M, Prabhu KS, Rayman MP, Rozovsky S, Salinas G, Schmidt EE, Schomburg L, Schweizer U, Simonović M, Sunde RA, Tsuji PA, Tweedie S, Ursini F, Whanger PD, Zhang Y. (2016) Selenoprotein Gene Nomenclature. J Biol Chem. 291, 24036-24040.
Cox AG, Tsomides A, Kim AJ, Saunders D, Hwang KL, Evason KJ, Heidel J, Brown KK, Yuan M, Lien EC, Lee BC, Nissim S, Dickinson B, Chhangawala S, Chang CJ, Asara JM, Houvras Y, Gladyshev VN, Goessling W. (2016) Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc Natl Acad Sci USA. 113, E5562-E5571.
Zhou X, Meng X, Liu Z, Chang J, Wang B, Li M, Orozco-terWengel P, Tian S, Wen C, Wang Z, Garber PA, Pan H, Ye X, Xiang Z, Bruford MW, Edwards SV, Cao Y, Yu S, Gao L, Cao Z, Liu G, Ren B, Shi F, Peterfi Z, Li D, Li B, Jiang Z, Li J, Gladyshev VN, Li R, Li M. (2016) Population genomics reveals low genetic diversity and adaptation to hypoxia in snub-nosed monkeys. Mol Biol Evol. 33, 2670-2681.
Podolskiy DI, Gladyshev VN. (2016) Intrinsic Versus Extrinsic Cancer Risk Factors and Aging. Trends Mol Med. 22, 833-834.
Heaphy SM, Mariotti M, Gladyshev VN, Atkins JF, Baranov PV. (2016) Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in C. magnum. Mol Biol Evol. 33, 2885-2889.
Gladyshev VN. (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15, 594-602.
Mariotti M, Lobanov AV, Manta B, Santesmasses D, Bofill A, Guigó R, Gabaldón T, Gladyshev VN. (2016) Lokiarchaeota Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems. Mol Biol Evol. 33, 2441-2453.
Peterfi Z, Tarrago L, Gladyshev VN. (2016) Practical guide for dynamic monitoring of protein oxidation using genetically encoded ratiometric fluorescent bioensors of methionine sulfoxide. Methods 109, 149-157.
Carlson BA, Tobe R, Yefremova E, Tsuji PA, Hoffmann VJ, Schweizer U, Gladyshev VN, Hatfield DL, Conrad M. (2016) Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9, 22-31.
Tobe R, Carlson BA, Huh JH, Castro NP, Xu XM, Tsuji PA, Lee SG, Bang J, Na JW, Kong YY, Beaglehole D, Southon E, Seifried H, Tessarollo L, Salomon DS, Schweizer U, Gladyshev VN, Hatfield DL, Lee BJ. (2016) Selenophosphate Synthetase 1 is an Essential Protein with Roles in Regulation of Redox Homeostasis in Mammals. Biochem J. 473, 2141-2154.
Patrick A, Seluanov M, Hwang C, Tam J, Khan T, Morgenstern A, Wiener L, Vazquez JM, Zafar H, Wen R, Muratkalyeva M, Doerig K, Zagorulya M, Cole L, Catalano S, Ladd AA, Coppi AA, Coşkun Y, Tian X, Ablaeva J, Nevo E, Gladyshev VN, Zhang ZD, Vijg J, Seluanov A, Gorbunova V. (2016) Sensitivity of primary fibroblasts in culture to atmospheric oxygen does not correlate with species lifespan. Aging (Albany NY) 8, 841-847.
Lee BC, Kaya A, Gladyshev VN. (2016) Methionine restriction and life-span control. Ann NY Acad Sci. 1363, 116-124.
Bisio H, Bonilla M, Manta B, Graña M, Salzman V, Aguilar P, Gladyshev VN, Comini MA, Salinas G. (2016) A new class of thioredoxin-related protein able to bind iron-sulfur clusters. Antioxid Redox Signal. In Press.
RESULTS: The dimeric form of IsTRP coordinates Fe2S2 in a glutathione-independent manner; instead, Fe/S binding relies on the CXXC motif conserved among Trxs. This novel binding mechanism allows holo-IsTRP to be highly resistant to oxidation. IsTRP lacks canonical reductase activities. Mitochondrially targeted IsTRP aids growth of a Grx5 null yeast strain. Similar complementation assays performed with EgGrx5 revealed functional conservation for class II Grxs despite the presence of non-conserved structural elements. IsTRP is a cestode-lineage specific protein highly expressed in the gravid adult worm, which releases the infective stage critical for dissemination.
INNOVATION: IsTRP is the first member from the thioredoxin family to be reported to bind Fe/S. We disclose a novel mechanism of Fe/S coordination within the Trx folding unit, which renders the cluster highly resistant to oxidation-mediated disassembly.
CONCLUSION: We demonstrate that IsTRP defines a new protein family within the thioredoxin superfamily, confirm the conservation of function for class II glutaredoxin from non-phylogenetically related species and highlight the versatility of the Trx folding unit to acquire Fe/S binding as a recurrent emergent function. More Information
2015 Articles
MacRae SL, Croken MM, Calder RB, Aliper A, Milholland B, White RR, Zhavoronkov A, Gladyshev VN, Seluanov A, Gorbunova V, Zhang ZD, Vijg J. (2015) DNA repair in species with extreme lifespan differences. Aging (Albany NY) 7, 1171-1184.
Tobe R, Carlson BA, Tsuji PA, Lee BJ, Gladyshev VN, Hatfield DL. (2015) Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy. Cancers (Basel) 7, 2262-2276.
Zhou X, Seim I, Gladyshev VN. (2015) Convergent evolution of marine mammals is associated with distinct substitutions in common genes. Sci Rep. 5, 16550.
Ma S, Lee SG, Kim EB, Park TJ, Seluanov A, Gorbunova V, Buffenstein R, Seravalli J, Gladyshev VN. (2015) Organization of the Mammalian Ionome According to Organ Origin, Lineage Specialization, and Longevity. Cell Rep. 13, 1319-1326.
Kaya A, Gerashchenko MV, Seim I, Labarre J, Toledano MB, Gladyshev VN. (2015) Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins. Proc Natl Acad Sci USA 112, 10685-10690.
Ma S, Yim SH, Lee SG, Kim EB, Lee SR, Chang KT, Buffenstein R, Lewis KN, Park TJ, Miller RA, Clish CB, Gladyshev VN. (2015) Organization of the mammalian metabolome according to organ function, lineage specialization, and longevity. Cell Metabolism. 22, 332-343.
Turanov AA, Everley RA, Hybsier S, Renko K, Schomburg L, Gygi SP, Hatfield DL, Gladyshev VN. (2015) Regulation of Selenocysteine Content of Human Selenoprotein P by Dietary Selenium and Insertion of Cysteine in Place of Selenocysteine. PLoS One 10, e0140353.
Kaya A, Ma S, Wasko B, Lee M, Kaeberiein M, Gladyshev VN. (2015) Defining molecular basis for longevity traits in natural yeast isolates. npj Aging and Mechanisms of Disease 112, 10685-10690.
Aims and Methods: To obtain an unbiased view on longevity regulation, we analyzed how a replicative lifespan is shaped by transcriptional, translational, metabolic, and morphological factors across 22 wild-type Saccharomyces cerevisiae isolates.
Results: We observed significant differences in lifespan across these strains and found that their longevity is strongly associated with up-regulation of oxidative phosphorylation and respiration and down-regulation of amino- acid and nitrogen compound biosynthesis.
Conclusions: As calorie restriction and TOR signaling also extend the lifespan by adjusting many of the identified pathways, the data suggest that the natural plasticity of yeast lifespan is shaped by the processes that not only do not impose cost on fitness, but also are amenable to dietary intervention. More Information
Tarrago L, Péterfi Z, Lee BC, Michel T, Gladyshev VN. (2015) Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol. 11, 332-338.
Mariotti M, Santesmasses D, Capella-Gutierrez S, Mateo A, Arnan C, Johnson R, D’Aniello S, Yim SH, Gladyshev VN, Serras F, Corominas M, Gabaldon T, Guigo R. (2015) Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization. Genome Res. 25, 1256-1267.
Kaya A, Lee BC, Gladyshev VN. (2015) Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1. Antioxid Redox Signal. 23, 814-822.
CRITICAL ISSUES: So far, Micals have been the only known partners of MsrB1, and actin is the only target. It is important to identify additional substrates of Micals and characterize other Mical-like enzymes.
FUTURE DIRECTIONS: Oxidation of methionine, reviewed here, is an emerging but not well-established mechanism. Studies suggest that methionine oxidation is a form of oxidative damage of proteins, a modification that alters protein structure or function, a tool in redox signaling, and a mechanism that controls protein function. Understanding the functional impact of reversible oxidation of methionine will require identification of targets, substrates, and regulators of Micals and Msrs. Linking the biological processes, in which these proteins participate, might also lead to insights into disease conditions, which involve regulation of actin by Micals and Msrs. Antioxid. Redox Signal. 00, 000-000. More Information
Gould NS, Evans P, Martínez-Acedo P, Marino SM, Gladyshev VN, Carroll KS, Ischiropoulos H.(2015) Site-Specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks. Chem Biol. 22, 965-975.
Kaya A, Lobanov AV, Gladyshev VN. (2015) Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae. Aging Cell 14, 366-371.
Fushan AA, Turanov AA, Lee SG, Kim EB, Lobanov AV, Yim SH, Buffenstein R, Lee SR, Chang KT, Rhee H, Kim JS, Yang KS, Gladyshev VN. (2015) Gene expression defines natural changes in mammalian lifespan. Aging Cell 14, 352-365.
Kim MJ, Lee BC, Hwang KY, Gladyshev VN, Kim HY. (2015) Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine. Biochem Biophys Res Commun. 461, 648-652.
Tsuji PA, Carlson BA, Yoo MH, Naranjo-Suarez S, Xu XM, He Y, Asaki E, Seifried HE, Reinhold WC, Davis CD, Gladyshev VN, Hatfield DL. (2015) The 15kDa Selenoprotein and Thioredoxin Reductase 1 Promote Colon Cancer by Different Pathways. PLoS One 10, e0124487.
Bang J, Huh JH, Na JW, Lu Q, Carlson BA, Tobe R, Tsuji PA, Gladyshev VN, Hatfield DL, Lee BJ. (2015) Cell Proliferation and Motility are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells. Mol Cells 38, 457-465.
MacRae SL, Zhang Q, Lemetre C, Seim I, Calder RB, Hoeijmakers J, Suh Y, Gladyshev VN, Seluanov A, Gorbunova V, Vijg J, Zhang ZD. (2015) Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human. Aging Cell 14, 288-291.
Nakao LS, Everley RA, Marino SM, Lo SM, de Souza LE, Gygi SP, Gladyshev VN. (2015) Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins. J Biol Chem. 290, 5685-5695.
Tian X, Azpurua J, Ke Z, Augereau A, Zhang ZD, Vijg J, Gladyshev VN, Gorbunova V, Seluanov A. (2015) INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proc Natl Acad Sci USA 112, 1053-1058.
Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Treviño-Villarreal JH, Mejia P, Ozaki CK, Wang R, Gladyshev VN, Madeo F, Mair WB, Mitchell JR. (2015) Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits. Cell 160, 132-144.
Bang J, Jang M, Huh JH, Na J, Shim M, Carlson BA, Tobe R, Tsuji PA, Gladyshev VN, Hatfield DL, Lee BJ. (2015) Deficiency of the 15-kDa selenoprotein led to cytoskeleton remodeling and non-apoptotic membrane blebbing through a RhoA/ROCK pathway. Biochem Biophys Res Commun. 456, 884-890.
Cornelis MC, Fornage M, Foy M, Xun P, Gladyshev VN, Morris S, Chasman DI, Hu FB, Rimm EB, Kraft P, Jordan JM, Mozaffarian D, He K. (2015) Genome-wide association study of selenium concentrations. Hum Mol Genet. 24, 1469-1477.
2014 Articles
Seim I, Ma S, Zhou X, Gerashchenko MV, Lee SG, Suydam R, George JC, Bickham JW, Gladyshev VN. (2014) The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging (Albany NY) 6, 879-899.
Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, Zhu Y, Lobanov AV, Fan D, Yim SH, Yao X, Ma S, Yang L, Lee SG, Kim EB, Bronson RT, Sumbera R, Buffenstein R, Zhou X, Krogh A, Park TJ, Zhang G, Wang J, Gladyshev VN.(2014) Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep. 8, 1354-1364.
Kaya A, Lobanov AV, Gerashchenko MV, Koren A, Fomenko DE, Koc A, Gladyshev VN. (2014) Thiol Peroxidase Deficiency Leads to Increased Mutational Load and Decreased Fitness in Saccharomyces cerevisiae. Genetics 198, 905-917.
Gerashchenko MV, Gladyshev VN. (2014) Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134.
Guo C, Chen X, Song H, Maynard MA, Zhou Y, Lobanov AV, Gladyshev VN, Ganis JJ, Wiley D, Jugo RH, Lee NY, Castroneves LA, Zon LI, Scanlan TS, Feldman HA, Huang SA. (2014) Intrinsic Expression of a Multiexon Type 3 Deiodinase Gene Controls Zebrafish Embryo Size. Endocrinology 155, 4069-4080.
Labunskyy VM, Hatfield DL, Gladyshev VN. (2014) Selenoproteins: Molecular Pathways and Physiological Roles. Physiol Rev. 94, 739-777.
Gorbunova V, Seluanov A, Zhang Z, Gladyshev VN, Vijg J. (2014) Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat Rev Genet. 15, 531-540.
Turanov AA, Shchedrina VA, Everley RA, Lobanov AV, Yim SH, Marino SM, Gygi SP, Hatfield DL, Gladyshev VN. (2014) Selenoprotein S is Involved in Maintenance and Transport of Multiprotein Complexes. Biochem J. 462, 555-565.
Ables GP, Brown-Borg HM, Buffenstein R, Church CD, Elshorbagy AK, Gladyshev VN, Huang TH, Miller RA, Mitchell JR, Richie JP, Rogina B, Stipanuk MH, Orentreich DS, Orentreich N. (2014) The first international mini-symposium on methionine restriction and lifespan. Front Genet. 5, 122.
Avanesov AS, Ma S, Pierce KA, Yim SH, Lee BC, Clish CB, Gladyshev VN. (2014) Age- and diet-associated metabolome remodeling characterizes the aging process driven by damage accumulation. eLife 3, e02077.
Otero L, Romanelli-Cedrez L, Turanov AA, Gladyshev VN, Miranda-Vizuete A, Salinas G. (2014) Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage. RNA 20, 1023-1034.
Labunskyy VM, Suzuki Y, Hanly TJ, Murao A, Roth FP, Gladyshev VN. (2014) The Insertion Green Monster (iGM) Method for Expression of Multiple Exogenous Genes in Yeast. G3 (Bethesda) 4, 183-191.
KEYWORDS: Saccharomyces cerevisiae, flow cytometry, green fluorescent protein, multi-gene insertions, synthetic biology More Information
Han SJ, Lee BC, Yim SH, Gladyshev VN, Lee SR. (2014) Characterization of Mammalian selenoprotein o: a redox-active mitochondrial protein. PLoS One 9, e95518.
Barroso M, Florindo C, Kalwa H, Silva Z, Turanov AA, Carlson BA, Tavares de Almeida I, Blom HJ, Gladyshev VN, Hatfield DL, Michel T, Castro R, Loscalzo J, Handy DE. (2014) Inhibition of Cellular Methyltransferases Promotes Endothelial Cell Activation by Suppressing Glutathione Peroxidase-1 Expression. J Biol Chem. 289, 15350-15362.
Lee BC, Kaya A, Ma S, Kim G, Gerashchenko MV, Yim SH, Hu Z, Harshman LG, Gladyshev VN. (2014) Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat Commun. 5, 3592.
Malinouski M, Hasan NM, Zhang Y, Seravalli J, Lin J, Avanesov A, Lutsenko S, Gladyshev VN. (2014) Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism. Nat Commun. 5, 3301.
Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci. 39, 112-120.
Labunskyy VM, Gerashchenko MV, Delaney JR, Kaya A, Kennedy BK, Kaeberlein M, Gladyshev VN. (2014) Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires induction of the unfolded protein response. PLoS Genet. 10, e1004019.
Romagné F, Santesmasses D, White L, Sarangi GK, Mariotti M, Hübler R, Weihmann A, Parra G, Gladyshev VN, Guigó R, Castellano S. (2014) SelenoDB 2.0: annotation of selenoprotein genes in animals and their genetic diversity in humans. Nucleic Acids Res. 42, D437-D443.
Gladyshev VN. (2014) The free radical theory of aging is dead. Long live the damage theory! Antioxid Redox Signal. 20, 727-731.
2013 Articles
Yoo MH, Carlson BA, Gladyshev VN, Hatfield DL. (2013) Abrogated Thioredoxin System Causes Increased Sensitivity to TNF-α-Induced Apoptosis via Enrichment of p-ERK 1/2 in the Nucleus. PLoS One 8, e71427.
Lobanov AV, Gladyshev VN. (2013) Selenoproteome of Kinetoplastids. Drug Dis in Infect Dis. 4, 237-242.
2012 Articles
Dobrovolska O, Shumilina E, Gladyshev VN, Dikiy A.. (2012) Structural Analysis of Glutaredoxin Domain of Mus musculus Thioredoxin Glutathione Reductase. PLoS One 7, e52914.
RESULTS: We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity.
CONCLUSION: Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation.
More Information
More Information
More Information
More Information
More Information
METHODOLOGY/PRINCIPAL FINDINGS: We characterized the selenoproteomes of 44 sequenced vertebrates by applying gene prediction and phylogenetic reconstruction methods, supplemented with the analyses of gene structures, alternative splicing isoforms, untranslated regions, SECIS elements, and pseudogenes. In total, we detected 45 selenoprotein subfamilies. 28 of them were found in mammals, and 41 in bony fishes. We define the ancestral vertebrate (28 proteins) and mammalian (25 proteins) selenoproteomes, and describe how they evolved along lineages through gene duplication (20 events), gene loss (10 events) and replacement of Sec with cysteine (12 events). We show that an intronless selenophosphate synthetase 2 gene evolved in early mammals and replaced functionally the original multiexon gene in placental mammals, whereas both genes remain in marsupials. Mammalian thioredoxin reductase 1 and thioredoxin-glutathione reductase evolved from an ancestral glutaredoxin-domain containing enzyme, still present in fish. Selenoprotein V and GPx6 evolved specifically in placental mammals from duplications of SelW and GPx3, respectively, and GPx6 lost Sec several times independently. Bony fishes were characterized by duplications of several selenoprotein families (GPx1, GPx3, GPx4, Dio3, MsrB1, SelJ, SelO, SelT, SelU1, and SelW2). Finally, we report identification of new isoforms for several selenoproteins and describe unusually conserved selenoprotein pseudogenes.
CONCLUSIONS/SIGNIFICANCE: This analysis represents the first comprehensive survey of the vertebrate and mammal selenoproteomes, and depicts their evolution along lineages. It also provides a wealth of information on these selenoproteins and their forms.
More Information
More Information
2011 Articles
Turanov AA, Xu XM, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL. (2011) Biosynthesis of selenocysteine, the 21st amino Acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr. 2, 122-128.
Uluisik I, Kaya A, Fomenko DE, Karakaya HC, Carlson BA, Gladyshev VN, Koc A. (2011) Boron stress activates the general amino Acid control mechanism and inhibits protein synthesis. PLoS One 6, e27772.
Shchedrina VA, Everley RA, Zhang Y, Gygi SP, Hatfield DL, Gladyshev VN. (2011) Selenoprotein K binds multi-protein complexes and is involved in the regulation of ER homeostasis. J. Biol. Chem. 286, 42937-42948.
Aachmann FL, Kwak GH, Del Conte R, Kim HY, Gladyshev VN, Dikiy A. (2011) Structural and biochemical analysis of mammalian methionine sulfoxide reductase B2. Proteins 79, 3123-3131.
Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN. (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479, 223-227.
Carlson BA, Yoo MH, Conrad M, Gladyshev VN, Hatfield DL, Park JM. (2011) Protein kinase-regulated expression and immune function of thioredoxin reductase 1 in mouse macrophages. Mol. Immunol. 49, 311-316.
Fomenko DE, Gladyshev VN. (2011) Comparative Genomics of Thiol Oxidoreductases Reveals Widespread and Essential Functions of Thiol-based Redox Control of Cellular Processes. Antioxid. Redox Signal. 16, 193-201.
Malinouski M, Kehr S, Finney L, Vogt S, Carlson BA, Seravalli J, Jin R, Handy DE, Park TJ, Loscalzo J, Hatfield DL, Gladyshev VN. (2011) High-Resolution Imaging of Selenium in Kidneys: a Localized Selenium Pool Associated with Glutathione Peroxidase 3. Antioxid. Redox Signal. 16, 185-192.
Yim SH, Kim YJ, Oh SY, Fujii J, Zhang Y, Gladyshev VN, Rhee SG. (2011) Identification and characterization of an alternatively transcribed form of peroxiredoxin IV that is specifically expressed in spermatids of the postpubertal mouse testis. J. Biol. Chem. 286, 39002-39012.
Lee BC, Fomenko DE, Gladyshev VN. (2011) Selective Reduction of Methylsulfinyl-containing Compounds by mammalian MsrA Suggests a Strategy for Improved Drug Efficacy. ACS Chem Biol., 6, 1029-1035.
Goponenko AV, Boyle BJ, Jahan KI, Gerashchenko MV, Fomenko DE, Gladyshev VN, Dzenis YA. (2011) Use of environmental scanning electron microscopy for in situ observation of interaction of cells with micro- and nanoprobes. Micro Nano Lett. 8, 603-608.
Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA, Zhang J, Wojnarowicz MW Jr, Natarajan SK, Malinouski M, Schweizer U, Tsuji PA, Carlson BA, Maas RL, Lou MF, Goldstein LE, Hatfield DL, Gladyshev VN. (2011) Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice. J. Biol. Chem. 286, 33203-33212.
Kim JY, Carlson BA, Xu XM, Zeng Y, Chen S, Gladyshev VN, Lee BJ, Hatfield DL. (2011) Inhibition of selenocysteine tRNA([Ser]Sec) aminoacylation provides evidence that aminoacylation is required for regulatory methylation of this tRNA. Biochem. Biophys. Res. Commun. 409, 814-819.
Shchedrina VA, Kabil H, Vorbruggen G, Lee BC, Turanov AA, Hirosawa-Takamori M, Kim HY, Harshman LG, Hatfield DL, Gladyshev VN. (2011) Analyses of fruit flies that do not express selenoproteins or express a mouse selenoprotein, methionine sulfoxide reductase B1, reveal a role of selenoproteins in stress resistance.
J. Biol. Chem. 286, 29449-29461.
Zhang Y, Rump S, Gladyshev VN. (2011) Comparative genomics and evolution of molybdenum utilization. Coord. Chem. Rev. 255, 1206-1217.
Zhang Y, Gladyshev VN. (2011) Comparative genomics of trace element dependence in biology. J. Biol. Chem. 286, 23623-23629.
Kasaikina MV, Kravtsova MA, Lee BC, Seravalli J, Peterson DA, Walter J, Legge R, Benson AK, Hatfield DL, Gladyshev VN. (2011) Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J. 25, 2492-2499.
Wu C, Parrott AM, Fu C, Liu T, Marino SM, Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve A, Simmons WJ, Li H. (2011) Thioredoxin 1-Mediated Post-Translational Modifications: Reduction, Transnitrosylation, Denitrosylation and Related Proteomics Methodologies. Antioxid. Redox Signal. 15, 2565-2604.
Lee BC, Lobanov AV, Marino SM, Kaya A, Seravalli J, Hatfield DL, Gladyshev VN. (2011) A 4-Selenocysteine, 2-Selenocysteine Insertion Sequence (SECIS) Element Methionine Sulfoxide Reductase from Metridium senile Reveals a Non-catalytic Function of Selenocysteines. J. Biol. Chem. 286, 18747-18755.
Kasaikina MV, Lobanov AV, Malinouski MY, Lee BC, Seravalli J, Fomenko DE, Turanov AA, Finney L, Vogt S, Park TJ, Miller RA, Hatfield DL, Gladyshev VN. (2011) Reduced utilization of selenium by naked mole rats due to a specific defect in GPx1 expression.J. Biol. Chem. 286, 17005-17014.
Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes NC, Kuo A, Terry A, Pangilinan J, Lindquist E, Lucas S, Paulsen I, Hattenrath TK, Talmage SC, Walker EA, Koch F, Burson AM, Alejandra Marcoval M, Tang YZ, LeCleir GR, Coyne KJ, Mine Berg G, Bertrand EM, Saito MA, Gladyshev VN, Grigoriev IV. (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl. Acad. Sci. USA 108, 4352-4357.
Bonilla M, Denicola A, Marino SM, Gladyshev VN, Salinas G. (2011) Linked thioredoxin-glutathione systems in platyhelminth parasites: Alternative pathways for glutathione reduction and deglutathionylation. J. Biol. Chem. 286, 4959-4967.
Marino SM, Gladyshev VN. (2011) Proteomics: Mapping reactive cysteines. Nature Chem. Biol. 7, 72-73.
Suzuki Y, St. Onge RP, Mani R, King OD, Heilbut A, Labunskyy VM, Chen W, Pham L, Zhang LV, Tong AHY, Nislow C, Giaever G, Gladyshev VN, Vidal M, Schow P, Lehár J, Roth FP. (2011) Knocking out multi-gene redundancies via cycles of sexual assortment and fluorescence selection. Nat. Methods 8, 159-164.
Fomenko DE, Koc A, Agisheva N, Jacobsen M, Kaya A, Malinouski M, Rutherford JC, Siu KL, Jin DY, Winge DR, Gladyshev VN. (2011) Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA 108, 2729-2734.
Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN. (2011) Hydrogen peroxide probes directed to different cellular compartments. PloS One 6, e14564, 1-10.
Lee BC, Gladyshev VN. (2011) The biological significance of methionine sulfoxide stereochemistry. Free Rad. Biol. Med. 50, 221-227.
Ahmed ZM, Yousaf R, Lee BC, Khan SN, Lee S, Lee K, Husnain T, Rehman AU, Bonneux S, Ansar M, Ahmad W, Leal SM, Gladyshev VN, Belyantseva IA, Van Camp G, Riazuddin S, Friedman TB, Riazuddin S. (2011) Functional null mutations of MSRB3 encoding methionine sulfoxide reductase are associated with human deafness DFNB74. Am. J. Hum. Genet. 88, 19-29.
Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN. (2011) Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid. Redox Signal. 14, 2327-2336.
Marino SM, Gladyshev VN. (2011) Redox Biology: Computational Approaches to the Investigation of Functional Cysteine Residues.Antioxid. Redox Signal. 15, 135-146.
Turanov A, Xu XM, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL. (2011) Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv. Nutr. 2, 122-128.
Kim MJ, Lee BC, Jeong J, Lee KJ, Hwang KY, Gladyshev VN, Kim HY. (2011) Tandem use of selenocysteine: adaptation of a selenoprotein glutaredoxin for reduction of selenoprotein methionine sulfoxide reductase. Mol. Microbiol. 79, 1194-1203.
2010 Articles
Sengupta A, Lichti UF, Carlson BA, Ryscavage AO, Gladyshev VN, Yuspa SH, Hatfield DL. (2010) Selenoproteins Are Essential for Proper Keratinocyte Function and Skin Development. PLoS 5, e12249, 1-15.
Kaya A, Koc A, Lee BC, Fomenko DE, Rederstorff M, Krol A, Lescure A, Gladyshev VN. (2010) Compartmentalization and Regulation of Mitochondrial Function by Methionine Sulfoxide Reductases in Yeast. Biochemistry 49, 8618-8625.
Marino SM, Li Y, Fomenko DE, Agisheva N, Cerny RL, Gladyshev VN. (2010) Characterization of Surface-Exposed Reactive Cysteine Residues in Saccharomyces cerevisiae. Biochemistry 49, 7709-7721.
Liang X, Fomenko DE, Hua D, Kaya A, Gladyshev VN. (2010) Diversity of protein and mRNA forms of mammalian methionine sulfoxide reductase B1 due to intronization and protein processing. PLoS One 5, e11497, 1-8.
2009 Articles
2008 Articles
2007 Articles
Yoo MH, Xu XM, Carlson BA, Patterson AD, Gladyshev VN, Hatfield DL. (2007) Targeting thioredoxin reductase 1 reduction in cancer cells inhibits self-sufficient growth and DNA replication. PLoS ONE 2, e1112, 1-7.
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV., Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV., Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN., Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250.
More Information
More Information
More Information
Aachmann FL, Fomenko DE, Soragni A, Gladyshev VN, Dikiy A. (2007) Structural analysis of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. J. Biol. Chem. 282, 37036-37044.
Kim HY, Gladyshev VN. (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329.
Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN. (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic and small with terrestrial life. Genome Biol. 8, R198.
Carlson BA, Moustafa ME, Sengupta A, Schweizer U, Shrimali R, Rao M, Zhong N, Wang S, Feigenbaum L, Lee BJ, Gladyshev VN, Hatfield DL. (2007) Selective restoration of the selenoprotein population in a mouse hepatocyte selenoproteinless background with different mutant selenocysteine tRNAs lacking Um34. J. Biol. Chem. 282, 32591-32602.
Xu XM, Carlson BA, Zhang Y, Mix H, Kryukov GV, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL. (2007) New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea. Biol. Trace Elem. Res. 119, 234-241.
Shchedrina VA, Novoselov SV, Malinouski MY, Gladyshev VN. (2007) Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif. Proc. Natl. Acad. Sci. USA 104, 13919-13924.
AbstractSelenocysteine (Sec, U) insertion into proteins is directed by translational recoding of specific UGA codons located upstream of a stem-loop structure known as Sec insertion sequence (SECIS) element. Selenoproteins with known functions are oxidoreductases containing a single redox-active Sec in their active sites. In this work, we identified a family of selenoproteins, designated SelL, containing two Sec separated by two other residues to form a UxxU motif. SelL proteins show an unusual occurrence, being present in diverse aquatic organisms, including fish, invertebrates, and marine bacteria. Both eukaryotic and bacterial SelL genes use single SECIS elements for insertion of two Sec. In eukaryotes, the SECIS is located in the 3′ UTR, whereas the bacterial SelL SECIS is within a coding region and positioned at a distance that supports the insertion of either of the two Sec or both of these residues. SelL proteins possess a thioredoxin-like fold wherein the UxxU motif corresponds to the catalytic CxxC motif in thioredoxins, suggesting a redox function of SelL proteins. Distantly related SelL-like proteins were also identified in a variety of organisms that had either one or both Sec replaced with Cys. Danio rerio SelL, transiently expressed in mammalian cells, incorporated two Sec and localized to the cytosol. In these cells, it occurred in an oxidized form and was not reducible by DTT. In a bacterial expression system, we directly demonstrated the formation of a diselenide bond between the two Sec, establishing it as the first diselenide bond found in a natural protein. More Information
Zhang Y, Gladyshev VN. (2007) High content of proteins containing 21st and 22nd amino acids, selenocysteine and pyrrolysine, in a symbiotic deltaproteobacterium of gutless worm Olavius algarvensis. Nucleic Acids Res. 35, 4952-4963.
AbstractSelenocysteine (Sec) and pyrrolysine (Pyl) are rare amino acids that are cotranslationally inserted into proteins and known as the 21st and 22nd amino acids in the genetic code. Sec and Pyl are encoded by UGA and UAG codons, respectively, which normally serve as stop signals. Herein, we report on unusually large selenoproteomes and pyrroproteomes in a symbiont metagenomic dataset of a marine gutless worm, Olavius algarvensis. We identified 99 selenoprotein genes that clustered into 30 families, including 17 new selenoprotein genes that belong to six families. In addition, several Pyl-containing proteins were identified in this dataset. Most selenoproteins and Pyl-containing proteins were present in a single deltaproteobacterium, delta1 symbiont, which contained the largest number of both selenoproteins and Pyl-containing proteins of any organism reported to date. Our data contrast with the previous observations that symbionts and host-associated bacteria either lose Sec utilization or possess a limited number of selenoproteins, and suggest that the environment in the gutless worm promotes Sec and Pyl utilization. Anaerobic conditions and consistent selenium supply might be the factors that support the use of amino acids that extend the genetic code. More Information
Sal LS, Aachmann FL, Kim H, Gladyshev VN, Dikiy A. (2007) NMR assignments of 1H, 13C and 15N spectra of methionine sulfoxide reductase B1 from Mus musculus. Biomol NMR Assign, 1, 131-133.
Su D, Berndt C, Fomenko DE, Holmgren A, Gladyshev VN. (2007) A Conserved cis-Proline Precludes Metal Binding by the Active Site Thiolates in Members of the Thioredoxin Family of Proteins. Biochemistry 46, 6903-6910.
Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV, Hatfield DL, Gladyshev VN. (2007) SelT, SelW, SelH, and Rdx12: Genomics and Molecular Insights into the Functions of Selenoproteins of a Novel Thioredoxin-like Family. Biochemistry 46, 6871-6882.
Novoselov SV, Lobanov AV, Hua D, Kasaikina MV, Hatfield DL, Gladyshev VN. (2007) A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells. Proc. Natl. Acad. Sci. USA 104, 7857-7862.
Yoo MH, Xu XM, Turanov AA, Carlson BA, Gladyshev VN, Hatfield DL. (2007) A new strategy for assessing selenoprotein function: siRNA knockdown/knock-in targeting the 3′-UTR. RNA 13, 921-929.
Koc A, Gladyshev VN. (2007) Methionine sulfoxide reduction and the aging process. Ann. NY Acad. Sci. 1100, 383-386.
Labunskyy VM, Hatfield DL, Gladyshev VN. (2007) The Sep15 protein family: Roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life 59, 1-5.
Xu XM, Carlson BA, Irons R, Mix H, Zhong N, Gladyshev VN, Hatfield DL. (2007) Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem. J. 404, 115-20.
Novoselov SV, Kryukov GV, Xu XM, Carlson BA, Hatfield DL, Gladyshev VN. (2007) Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J. Biol. Chem. 282,11960-11968.
Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH. (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr. Opin. Plant Biol. 10, 190-198.
Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN. (2007) High-Throughput Identification of Catalytic Redox-Active Cysteine Residues. Science 315, 387-389.
Mix H, Lobanov AV, Gladyshev VN. (2007) SECIS elements in the coding regions of selenoprotein transcripts are functional in higher eukaryotes. Nucleic Acids Res. 35, 414-423.
Shrimali RK, Weaver JA, Miller GF, Starost MF, Carlson BA, Novoselov SV, Kumaraswamy E, Gladyshev VN, Hatfield DL. (2007) Neuromuscul. Disord. 7, 135-142.
Xu XM, Carlson BA, Mix H, Zhang Y, Saira K, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL. (2007) Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes. PLoS Biol. 5, e4, 1-9.
2006 Articles
2005 Articles
Earlier Articles
Gladyshev VN, Kryukov GV, Fomenko DE, Hatfield DL. (2004) Identification of trace element-containing proteins in genomic databases. Annu. Rev. Nutr. 24, 579-596.
Wang C, Scott S, Tao Q, Fomenko DE, Gladyshev VN. (2004) New Techniques for Generation and Analysis of Evolutionary Trees. International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences 283-289.
Su D, Gladyshev VN. (2004) Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1. Biochemistry 43, 12177-12188.
Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield,DL. (2004) Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc. Natl. Acad. Sci. USA 101, 12848-12853.
Kim HY, Gladyshev VN. (2004) Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Biochem. Biophys. Res. Commun. 320, 1277-1283.
Koc A, Gasch AP, Rutherford JC, Kim HY, Gladyshev VN. (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc. Natl. Acad. Sci. USA 101, 7999-8004.
Kryukov GV, Gladyshev VN. (2004) The prokaryotic selenoproteome. EMBO Rep. 5, 538-543.
Castellano S, Novoselov SV, Kryukov GV, Lescure A, Blanco E, Krol A, Gladyshev VN, Guigo R. (2004) Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. EMBO Rep. 7, 71-77.
Kim HY, Gladyshev VN. (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055-1064.
Carlson BA, Novoselov SV, Kumaraswamy E, Lee BJ, Anver MR, Gladyshev VN, Hatfield DL. (2004) Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J. Biol. Chem. 279, 8011-8017.
Fomenko DE, Gladyshev VN. (2003) Genomics perspective on disulfide bond formation. Antioxid. Redox Signal. 5, 397-402.
Kwon SY, Badenhorst P, Martin-Romero FJ, Carlson BA, Paterson BM, Gladyshev VN, Lee BJ, Hatfield DL. (2003) The Drosophila selenoprotein BthD is required for survival and has a role in salivary gland development. Mol. Cell. Biol. 23, 8495-8504.
Fomenko DE, Gladyshev VN. (2003) Identity and functions of CxxC-derived motifs. Biochemistry 42, 11214-11225.
Thisse C, Degrave A, Kryukov GV, Gladyshev VN, Obrecht-Pflumio S, Krol A, Thisse B, Lescure A. (2003) Spatial and temporal expression patterns of selenoprotein genes during embryogenesis in zebrafish. Gene Expr. Patterns 3, 525-532.
Rao M, Carlson BA, Novoselov SV, Weeks DP, Gladyshev VN, Hatfield DL. (2003) Chlamydomonas reinhardtii selenocysteine tRNA[Ser]Sec. RNA 9, 923-930.
Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN. (2003) Characterization of mammalian selenoproteomes. Science 300, 1439-1443.
Kumaraswamy E, Carlson BA, Morgan F, Miyoshi K, Robinson GW, Su D, Wan, S, Southo, E, Tessaroll, L, Le, B J, Gladyshe, VN, Hennighausen L, Hatfield DL. (2003) Selective removal of the selenocysteine tRNA [Ser]Sec gene (Trsp) in mouse mammary epithelium. Mol. Cell. Biol. 23, 1477-1488.
Novoselov SV, Gladyshev VN. (2003) Non-animal origin of animal thioredoxin reductases: Implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions. Protein Sci. 12, 372-378.
Xu XM, Carlson BA, Grimm TA, Kutza J, Berry MJ, Arreola R, Fields, KH, Shanmugam I, Jeang KT, Oroszlan S, Combs GF, Marx PA, Gladyshev VN, Clouse KA, Hatfield DL. (2002) Rhesus monkey simian immunodeficiency virus infection as a model for assessing the role of selenium in AIDS. J. Acquir. Immune. Defic. Syndr. 31, 453-463.
Fomenko DE, Gladyshev VN. (2002) CxxS: fold-independent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase function. Protein Sci. 11, 2285-2296.
Kumar RA, Koc A, Cerny RL, Gladyshev VN. (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J. Biol. Chem. 277, 37527-37535.
Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN. (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system. Chlamydomonas reinhardtii. EMBO J. 21, 3681-3693.
Kryukov GV, Kumar RA, Koc A, Sun Z, Gladyshev VN. (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA 99, 4245-4250.
Korotkov KV, Novoselov SV, Hatfield DL, Gladyshev VN. (2002) Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol. 22, 1402-1411.
Gladyshev VN. (2002) Thioredoxin and peptide methionine sulfoxide reductase: convergence of similar structure and function in distinct structural folds. Proteins 146, 149-152.
Hatfield DL, Gladyshev VN. (2002) How selenium has altered our understanding of the genetic code. Mol. Cell. Biol. 22, 3565-3576.
Sun Q, Gladyshev VN. (2002) Redox regulation of cell signaling by thioredoxin reductase. Methods Enzymol. 347, 451-461.
Gladyshev VN, Liu A, Novoselov SV, Krysan K, Sun QA, Kryukov VM, Kryukov GV, Lou MF (2001) Identification and characterization of a new mammalian glutaredoxin (thioltransferase) Grx2. J. Biol. Chem. 276, 30374-30380.
Martin-Romero FJ, Kryukov GK, Lobanov AV, Carlson BA, Lee BJ, Gladyshev VN, Hatfield DL. (2001) Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility and mortality. J. Biol. Chem. 276, 29798-29804.
Moustafa ME, Carlson BA, El-Saadani MA, Kryukov GV, Sun Q.-A, Harney JW, Hill KE, Combs GF, Feigenbaum L, Mansur DB, Burk RF, Berry MJ, Diamond AM, Lee BJ, Gladyshev VN, Hatfield DL. (2001) Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine mutant selenocysteine tRNA transgenes. Mol. Cell. Biol. 21, 3840-3852.
Sun Q-A, Kirnarsky L, Sherman S, Gladyshev VN. (2001) Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc. Natl. Acad. Sci. USA 98, 3673-3678.
Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN. (2001) Association between the 15 kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J. Biol. Chem. 276, 15330-15336.
Hu YJ, Korotkov KV, Mehta R, Hatfield DL, Rotimi C, Luke A, Prewitt TE, Cooper RS, Stock W, Vokes EE, Dolan ME, Gladyshev VN, Diamond AM. (2001) Distribution and functional consequences of nucleotide polymorphisms in the 3′-untranslated region of the human Sep15 gene. Cancer Res. 61, 2307-2310.
Sun Q-A, Zappacosta F, Factor VM, Wirth P, Hatfield DL, Gladyshev VN. (2001) Heterogeneity within animal thioredoxin reductases: evidence for alternative first exon splicing. J. Biol. Chem. 276, 3106-3114.
Gladyshev VN, Kryukov GV. (2001) Evolution of selenocysteine-containing proteins: significance of identification and functional characterization of selenoproteins. BioFactors 14, 87-92.
Gladyshev VN, Diamond DL, Hatfield DL. (2001) The 15 kDa selenoprotein (Sep15): functional studies and a role in cancer etiology. In Selenium: its molecular biology and role in human health (ed., Hatfield DL), Kluwer Academic Publishers, pp. 147-155.
Gladyshev VN. (2001) Selenium in biology and human health: controversies and perspectives. In Selenium: its molecular biology and role in human health (ed., Hatfield DL), Kluwer Academic Publishers, pp. 313-317.
Gladyshev VN, Hatfield DL. (2001) Analysis of selenocysteine-containing proteins. Curr. Protoc. Protein Sci. 3, 3.8.
Kumaraswamy E, Malykh A, Korotkov KV, Kozyavkin S, Hu Y, Moustafa ME, Carlson B, Berry MJ, Lee BJ, Hatfield DL, Diamond AM, Gladyshev VN. (2000) Structure-expression relationships of the 15 kDa selenoprotein gene: possible role of the protein in cancer etiology. J. Biol. Chem. 275, 35540-35547.
Kryukov GV, Gladyshev VN. (2000) Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing seventeen selenocysteine residues. Genes Cells 5, 1049-1060.
Mansur DB, Hao H, Gladyshev VN, Korotkov K, Hu Y, Moustafa ME, El-Saadani MA. Carlson BA, Hatfield DL, Diamond AM. (2000) Multiple levels of regulation of selenoprotein biosynthesis revealed from the analysis of human glioma cell lines. Biochem. Pharm. 60, 489-497.
Gladyshev VN, Stadtman TC, Hatfield DL, Jeang KT. (1999) Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase. Proc. Natl. Acad. Sci. USA 96, 835-839.
Gladyshev VN, Jeang KT, Wootton JC, Hatfield DL. (1998) A new human selenium-containing protein: purification, characterization and cDNA sequence. J. Biol. Chem. 273, 8910-8915.
Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD. (1997) Crystal structure of formate dehydrogenase H: catalysis involving molybdenum, molybdopterin, selenocysteine and an Fe4S4 cluster. Science 275, 1305-1308.
Gladyshev VN, Jeang KT, Stadtman TC. (1996) Selenocysteine, identified as the penultimate C- terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc. Natl. Acad. Sci. USA 93, 6146-6151.
Gladyshev VN, Boyington JC, Khangulov SV, Grahame DA, Stadtman TC, Sun PD. (1996) Characterization of crystalline formate dehydrogenase H from Escherichia Coli: stabilization, EPR spectroscopy and preliminary crystallographic analysis. J. Biol. Chem. 271, 8095-8100.
Books
- Carlson BA, Lee BJ, Tsuji PA, Tobe R, Park JM, Schweitzer U, Gladyshev VN, Hatfield DL. Selenocysteine tRNA[Ser]Sec: From Nonsense Suppressor tRNA to the Quintessential Constituent in Selenoprotein Biosynthesis. Springer, 3-12.
- Gladyshev VN, Carlson BA, Hatfield DL. Pathways in De Novo Biosynthesis of Selenocysteine and Cysteine in Eukaryotes. Springer, 39-45.
- Gladyshev VN. Eukaryotic Selenoproteomes. Springer, 127-139.
- Tsuji PA, Carlson BA, Lee BJ, Gladyshev VN, Hatfield DL. Interplay of Selenoproteins and Different Antioxidant Systems in Various Cancers. Springer, 441-449.
- Lobanov AV, Gladyshev VN. The Naked Mole Rat and Selenium. Springer, 579-585.
Jakob U, Reichmann D. Editors. (2013) Oxidative Stress and Redox Regulation. Springer.
- Marino SM, Roos G, Gladyshev VN. Computational Redox Biology: Methods and Applications. Springer, 187-211.
Banci B. Editor. (2013) Metallomics and the Cell. Springer.
- Gladyshev VN, Zhang Y. Comparative Genomics Analysis of the Metallomes. Springer, 529-580.
Jager T, Koch O, Flohe L, Selzer PM. Editors. (2013)
Trypanosomatid Diseases: Molecular Routes to Drug Discovery. Wiley-Blackwell.
- Gladyshev VN, Zhang Y. Selenoproteome of Kinetoplastids. Wiley-Blackwell, 237-242.
Hatfield DL, Berry MJ, Gladyshev VN. Editors. (2011) Selenium: Its molecular biology and role in human health, 3rd Edition. Springer.
- Xu XM, Turanov A, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL. Selenocysteine biosynthesis and the replacement of selenocysteine with cysteine in the pathway. Springer, 23-31.
- Gladyshev VN. Selenoproteins and selenoproteomes. Springer, 109-123.
- Marino SM, Gladyshev VN, Dikiy A. Structural characterization of mammalian selenoproteins. Springer, 125-136.
- Yoo MH, Carlson BA, Tsuji PA, Tobe R, Naranjo-Suarez S, Lee BJ, Davis CD, Gladyshev VN, Hatfield DL. Selenoproteins harboring a split personality in both preventing and promoting cancer. Springer, 325-333.
- Turanov AA, Malinouski M, Gladyshev VN. Selenium and male reproduction. Springer, 409-417.
- Salinas G, Bonilla M, Otero L, Lobanov AV, Gladyshev VN. Selenoproteins in parasites. Springer, 471-479.
- Kim HY, Gladyshev VN. Selenium and methionine sulfoxide reduction. Springer, 481-492.
- Carlson BA, Yoo MH, Tsuji PA, Tobe R, Naranjo-Suarez S, Chen F, Feigenbaum L, Tessarollo L, Lee BJ, Gladyshev VN, Hatfield DL. Mouse models that target removal or over-expression of the selenocysteine tRNA [Ser]Sec gene to elucidate the role of selenoproteins in health and development. Springer, 561-587.
Atkins JF, Gesteland R. Editors. (2010) Recoding: Expansion of Decoding Rules Enriches Gene Expression. Springer.
- Gladyshev VN, Hatfield DL. Selenocysteine Biosynthesis, Selenoproteins, and Selenoproteomes. Springer, 3-27.
Gladyshev VN, Ragsdale SW, Becker DF, Dickman MB. (2007) Redox Biochemistry. Ed., Banerjee R. John Wiley & Sons.
- Gladyshev VN. Methionine Sulfoxide Reductases. John Wiley & Sons, 84-87.
- Gladyshev VN. Selenoproteins. John Wiley & Sons, 127-131.
- Fomenko DE, Gladyshev VN. Bioinformatics Methods to Study Thiol-Based Oxidoreductases. John Wiley & Sons, 251-256.
Hatfield DL, Berry MJ, Gladyshev VN. Editors. (2006) Selenium: Its molecular biology and role in human health, 2nd Edition. Springer.
- Carlson BA, Xu, XM, Shrimali R, Sengupta A, Yoo MH, Irons R, Zhong N, Hatfield DL, Lee BJ, Lobanov AV, Gladyshev VN. Mammalian and other eukaryotic selenocysteine tRNAs. Springer, 31-40.
- Salinas G, Romero H, Xu XM, Carlson BA, Hatfield DL, Gladyshev VN. Evolution of Sec decoding and the key role of selenophosphate synthetase in the pathway of selenium utilization. Springer, 41-52.
- Gladyshev VN. Selenoproteins and selenoproteomes. Springer, 101-112.
- Kim HY, Gladyshev VN. Selenium and methionine sulfoxide reduction. Springer, 125-136.
- Labunskyy VM, Gladyshev VN, Hatfield DL. The 15-kDa selenoprotein (Sep15): functional analysis and role in cancer. Springer, 143-150.
- Carlson BA, Xu XM, Shrimali R, Sengupta A, Yoo MH, Zhong N, Hatfield DL, Irons R, Davis C, Lee BJ, Novoselov SV, Gladyshev VN. Mouse models for assessing the role of selenoproteins in health and development. Springer, 337-346.
- Salinas G, Lobanov AV, Gladyshev VN. Selenium in parasites. Springer, 359-370.
Hatfield DL. Editor. (2001) Selenium: Its molecular biology and role in human health. Kluwer Academic Publishers.
- Gladyshev VN. Identity, evolution and functions of selenoproteins and selenoprotein genes. Kluwer Academic Publishers, 31-40.
- Gladyshev VN, Diamond DL, Hatfield DL. The 15 kDa selenoprotein (Sep15): functional studies and a role in cancer etiology. Kluwer Academic Publishers, 147-155.
- Gladyshev VN. Selenium in biology and human health: controversies and perspectives. Kluwer Academic Publishers, 313-317.